
Physics Letters B 727 (2013) 244–248

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Shear viscosity of neutron-rich nucleonic matter near its liquid–gas
phase transition

Jun Xu a, Lie-Wen Chen b,c, Che Ming Ko d, Bao-An Li e,f, Yu Gang Ma a,∗
a Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
b Department of Physics and Astronomy and Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai 200240, China
c Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000, China
d Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
e Department of Physics and Astronomy, Texas A&M University-Commerce, Commerce, TX 75429-3011, USA
f Department of Applied Physics, Xi’an Jiao Tong University, Xi’an 710049, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 June 2013
Received in revised form 26 September
2013
Accepted 21 October 2013
Available online 26 October 2013
Editor: W. Haxton

Within a relaxation time approach using free nucleon–nucleon cross sections modified by the in-medium
nucleon masses that are determined from an isospin- and momentum-dependent effective nucleon–
nucleon interaction, we investigate the specific shear viscosity (η/s) of neutron-rich nucleonic matter
near its liquid–gas phase transition. It is found that as the nucleonic matter is heated at fixed pressure or
compressed at fixed temperature, its specific shear viscosity shows a valley shape in the temperature or
density dependence, with the minimum located at the boundary of the phase transition. Moreover, the
value of η/s drops suddenly at the first-order liquid–gas phase transition temperature, reaching as low
as 4–5 times the KSS bound of h̄/4π . However, it varies smoothly for the second-order liquid–gas phase
transition. Effects of the isospin degree of freedom and the nuclear symmetry energy on the value of η/s
are also discussed.

© 2013 Elsevier B.V. All rights reserved.
Transport properties of hot nuclear matter at various densities,
such as the shear viscosity, can be extracted from model analyses
of heavy-ion collisions. In relativistic heavy-ion collisions, detailed
studies have shown that the produced Quark–Gluon Plasma (QGP)
has a very small shear viscosity and behaves almost like an ideal
fluid [1,2]. Specifically, it has been found [3,4] that the specific
shear viscosity, i.e., the ratio of the shear viscosity to the entropy
density, of the QGP is only a few times the KSS lower bound of
h̄/4π derived from the AdS/CFT correspondence [5]. Also, the spe-
cific shear viscosity shows a minimum value around the critical
temperature of the hadron–quark phase transition [6,7]. It is ar-
gued in Ref. [6] that the existence of a minimum in the specific
shear viscosity is due to the difficulty for the momentum transport
in the QGP as its temperature is close to the critical temperature.

The shear viscosity of nucleonic matter is important for un-
derstanding various phenomena, such as signatures of the pos-
sible liquid–gas phase transition, in heavy-ion collisions at inter-
mediate energies [8,9]. Because of the short-range repulsive and
intermediate-range attractive nature of the nucleon–nucleon inter-
action, hot nucleonic matter is expected to undergo a liquid–gas
phase transition, see, e.g., Refs. [10,11]. Imprints of such a phase
transition on experimental observables, such as the rank distri-
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bution of fragments [12], are expected in the multifragmentation
process of heavy-ion collisions at intermediate energies [13]. How-
ever, while extensive studies have been made to investigate both
experimentally and theoretically the signatures and nature of the
liquid–gas phase transition using various approaches and observ-
ables over the last thirty years, see, e.g., Refs. [14–16] for recent re-
views, many interesting issues remain to be addressed. In fact, over
the last decade much work has been done to better understand the
mechanism and nature of the liquid–gas phase transition in isospin
asymmetric nucleonic matter, see, e.g., Refs. [17,18]. In particular,
what is the role of the isospin degree of freedom in nuclear ther-
modynamics? What is the order of the liquid–gas phase transition
in neutron-rich nucleonic matter? What are the effects of the den-
sity dependence of nuclear symmetry energy on the boundaries of
mechanical and chemical instabilities as well as the liquid–gas co-
existence line in neutron-rich matter? Answers to these questions
are important for understanding both astrophysical observations
of supernova explosions and terrestrial experiments done at rare
isotope beam facilities. However, many current answers are still
under debate. For instance, most models predict that while the
liquid–gas phase transition is of first-order in isospin symmetric
matter, it becomes a continuous transition in isospin asymmet-
ric matter examined at a constant proton fraction. On the other
hand, it has been shown that the liquid–gas phase transition is ac-
tually still of first-order even in isospin asymmetric matter except
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Fig. 1. (Color online.) Density dependence of a stiffer (x = 0) and a softer (x = 1)
symmetry energy from the MDI interaction.

at the two ending points because of the existence of a spinodal
region [19].

Similar to its behavior at the hadron–quark phase transition,
the specific shear viscosity of nucleonic matter also shows a
minimum value at the vicinity of its liquid–gas phase transi-
tion [20–22]. Also, it was speculated that the behavior of the spe-
cific shear viscosity at the phase transition may depend on the
order of the transition [23]. Thus, further studies on the specific
shear viscosity near the liquid–gas phase transition may help shed
new light on the nature of this transition in neutron-rich matter.
Indeed, it has been shown that the boundaries of both mechani-
cal and chemical instabilities responsible for the phase separation
[24,25] and the phase coexistence line [26,27] in asymmetric nu-
cleonic matter depend on the value of the nuclear symmetry en-
ergy Esym(ρ) at subsaturation densities. It is, however, not known
how the Esym(ρ) affects the specific shear viscosity of nucleonic
matter at the liquid–gas phase transition. Since the nuclear matter
can undergo the liquid–gas phase transition at different temper-
atures and densities in intermediate-energy heavy-ion collisions,
it is of interest to know how the specific shear viscosity would
behave under these various conditions. For example, is the valley
shape structure in the temperature and density dependence of the
specific shear viscosity of nucleonic matter the result of the liquid–
gas phase transition?

In the present study, we use a relaxation time approach to
study the specific shear viscosity of neutron-rich nucleonic matter
near the liquid–gas phase transition based on a consistent Gibbs
construction. We find that the behavior of the specific shear viscos-
ity at the liquid–gas phase transition depends on its order, and that
the phase transition can cause a valley structure in the tempera-
ture or density dependence of the specific shear viscosity, although
it does not necessarily require the existence of a phase transition.

For the nucleon–nucleon interaction, we use the isospin- and
momentum-dependent interaction proposed in Refs. [28,29] (here-
after ‘MDI’) with its parameters fitted to the binding energy
−16 MeV and incompressibility 212 MeV of normal nuclear matter
at the saturation density ρ0 = 0.16 fm−3. For the density depen-
dence of the symmetry energy, the parameter x is used to change
its slope parameter L = 3ρ0(dEsym/dρ)ρ=ρ0 but keeping its value
at saturation density fixed to Esym(ρ0) = 31.6 MeV. In particu-
lar, a stiffer and a softer symmetry energy with L ≈ 60 MeV and
L ≈ 15 MeV are obtained with x = 0 and x = 1, respectively, as
shown in Fig. 1, corresponding to current uncertainties in the den-
sity dependence of the symmetry energy at subsaturation densi-
ties [30].

To construct the liquid–gas phase transition region in the nu-
clear phase diagram, we use the Gibbs conditions, i.e., the liquid
Fig. 2. (Color online.) Chemical potential isobar as a function of isospin asymmetry
for the stiffer (x = 0) (a) and the softer (x = 1) symmetry energies (b) and binodal
surface (c) for both values of x at temperature T = 10 MeV.

and gas phases can coexist when they have the same chemi-
cal potential (μ(n,p)

l = μ
(n,p)
g ), pressure (Pl = P g ), and tempera-

ture (Tl = T g ). Specifically, we plot the chemical potential iso-
bar as a function of the isospin asymmetry δ, defined as δ =
(ρn − ρp)/(ρn + ρp), for neutrons as well as protons at a certain
temperature, and draw a rectangle within the proton and neutron
chemical potential isobars. The two ends of the rectangle then cor-
respond to the two coexisting phases, as shown in panels (a) and
(b) of Fig. 2 for the stiffer (x = 0) and the softer (x = 1) symme-
try energies, respectively, with the left end point having a smaller
isospin asymmetry and a larger density corresponding to a liquid
phase (L) and the right end point having a larger isospin asym-
metry and a smaller density corresponding to a gas phase (G).
This procedure is repeated until the pressure is too low to allow
a rectangle to be drawn or too high for the hot nucleonic mat-
ter to remain in the chemical instability region, i.e., the chemical
potential of neutrons (protons) increases (decreases) monotonically
with increasing isospin asymmetry. The coexisting phases at differ-
ent values of pressure form the binodal surface shown in panel (c)
of Fig. 2. The right and the left side of the binodal surface corre-
spond to the gas and the liquid phase, respectively, with the mixed
phase inside the binodal surface. The binodal surface thus provides
all the information needed to study the properties of the mixed
phase, i.e., the densities and isospin asymmetries of the two coex-
isting phases as well as their volume fractions. For more details on
the liquid–gas phase transition in nucleonic matter, we refer the
readers to Refs. [31,26,27].

In the phase coexistence region with the liquid phase occupying
a volume fraction λ, the average number and entropy densities can
be expressed as

ρ = λρl + (1 − λ)ρg, (1)

s = λsl + (1 − λ)sg, (2)

where ρl(g) and sl(g) are the number and entropy densities of the
liquid (gas) phase, respectively.

For the calculation of the shear viscosity, we consider a sta-
tionary flow field in the z direction, i.e., uz = f (x) in the nucleonic
matter where f (x) is an arbitrary function of the coordinate x, and
use a similar framework as in Ref. [32]. For a single phase of gas or
liquid, the shear force on the particles in a flow layer of a unit area
in the y–z plane is equal to the net z-component of momentum
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transported per sec in the x direction, i.e., the thermal average of
the product of the flux ρτ vx in the x direction and the momentum
transfer pz − muz in the z direction [32,33]

Fi =
∑

τ

〈
(pz − muz)ρτ vx

〉
i, (3)

with τ = n for neutrons and p for protons, i = l for the liquid
phase and g for the gas phase, and m being the nucleon mass.
The shear viscosity ηl(g) is then determined by

Fl(g) = −ηl(g)∂uz/∂x (4)

for either the liquid phase or the gas phase. We note that the
shear viscosity is independent of the flow gradient if ∂uz/∂x is
sufficiently small.

For a mixed phase of liquid and gas, the matter can be viewed
either as gas bubbles in a liquid or liquid droplets in a gas. The
matter above and below any flow layer are then either both liq-
uids or both gas unless the flow layer is tangent to the surface of
a gas bubble or a liquid droplet, which would have the liquid and
the gas on the opposite sides of the flow layer. Since the chance
for the latter to happen is infinitesimally smaller for an infinitely
large system with liquid droplets and gas bubbles randomly dis-
tributed as assumed in the present work, the fraction of the area
for particle transport across a flow layer in the liquid is thus λ and
that in the gas is 1 − λ, leading to an average shear force on a
unit area of flow layer in the mixed phase given by the sum of the
contributions from individual phases, i.e.,

F = λFl + (1 − λ)F g = −η∂uz/∂x. (5)

The average shear viscosity of the mixed phase can then be ex-
pressed in terms of those in the liquid or the gas phase as

η = ληl + (1 − λ)ηg . (6)

Because the density is uniform in each phase, ηl and ηg can
be separately calculated using the relaxation time approach as in
Ref. [32] based on free nucleon–nucleon cross sections [34] modi-
fied by the in-medium nucleon masses [35].

Fig. 3 displays the temperature dependence of the average re-
duced number density, the shear viscosity, and the specific shear
viscosity, obtained with the stiffer symmetry energy x = 0, when
the nucleonic matter is heated at the fixed pressure of P =
0.1 MeV/fm3. As the temperature increases, the hot nucleonic
matter undergoes a phase transition from the liquid phase at lower
temperatures to the gas phase at higher temperatures if it has an
isospin asymmetry δ = 0 or δ = 0.5 but has no phase transition
if the isospin asymmetry is δ = 1. The liquid–gas phase transition
is of first-order in symmetric nucleonic matter (δ = 0) as shown
in Fig. 26 of Ref. [27] by the sudden jump in the entropy per
nucleon from the liquid phase to the gas phase as well as the
discontinuity of the specific heat at the critical temperature. This
leads to the sudden changes in all the thermodynamical quantities
and the specific shear viscosity, while the latter evolves smoothly
during the phase transition when it changes to a second-order
one in neutron-rich matter (δ = 0.5), confirming the expectation
of Ref. [23]. Also, the liquid phase has a higher density and a
lower temperature than the gas phase as shown in the first row
of Fig. 3, leading to a stronger Pauli blocking effect in the liquid
phase than in the gas phase. As a result, the liquid phase gen-
erally has a larger shear viscosity than the gas phase. For each
phase, there are competing density and temperature effects on the
evolution of the shear viscosity. As discussed in Ref. [32], an in-
crease in temperature results in more frequent nucleon–nucleon
scatterings and weaker Pauli blocking effects, thus reducing the
Fig. 3. (Color online.) Temperature dependence of the average reduced number den-
sity (first row), the shear viscosity (second row), and the specific shear viscosity
(third row) at the fixed pressure of P = 0.1 MeV/fm3 for isospin symmetric mat-
ter (δ = 0) (left column), neutron-rich matter (δ = 0.5) (middle column), and pure
neutron matter (δ = 1) (right column) with the stiffer symmetry energy x = 0. Solid
lines are results including the liquid–gas phase transition with ‘L’, ‘M’, and ‘G’ rep-
resenting the liquid phase, the mixed phase, and the gas phase, respectively. Dashed
lines are results obtained by assuming the liquid–gas phase transition does not hap-
pen inside the binodal surface.

shear viscosity. On the other hand, the nucleon–nucleon scatter-
ing cross section decreases with increasing center-of-mass energy
of two colliding nucleons as shown in Fig. 2 of Ref. [32], which
makes the shear viscosity to increase with increasing tempera-
ture especially at very low densities. At higher densities, although
the stronger Pauli blocking effect increases the shear viscosity, the
smaller in-medium nucleon mass leads to a larger flux between
flow layers and a larger relative velocity between two colliding nu-
cleons, thus reducing the shear viscosity. Due to the combination
of these effects together with the behavior of the entropy density
with respect to temperature and density, the specific shear viscos-
ity decreases in the liquid phase but increases in the gas phase
with increasing temperature. The minimum of the specific shear
viscosity is exactly located at the critical temperature when a first-
order phase transition happens, while it is located at the boundary
of the gas phase if the phase transition is of second-order. Even
for a pure neutron matter without a liquid–gas phase transition,
the specific shear viscosity still shows a valley shape in its temper-
ature dependence as a result of the competing effects discussed
above.

The liquid–gas phase transition can also happen if the hot nu-
cleonic matter is compressed at a fixed temperature. The density
dependence of the pressure, the shear viscosity, and the specific
shear viscosity in this case are shown in Fig. 4, again using the
stiffer symmetry energy x = 0. For the symmetric nuclear mat-
ter (δ = 0) that has a first-order liquid–gas phase transition, the
pressure remains a constant when it is compressed from the low-
density gas phase to the high-density liquid phase. As the nucle-
onic matter becomes neutron-rich (δ = 0.5) with the phase tran-
sition changing to a second-order one, the pressure continues to
increase with increasing density in the mixed phase. For the pure
neutron matter, it again does not show a liquid–gas phase transi-
tion when it is compressed at a fixed temperature. It is shown in
the second row of Fig. 4 that the occurrence of the mixed phase
in the hot nucleonic matter when it is compressed at a constant
temperature generally increases the value of the shear viscosity
compared with the case by assuming that the liquid–gas phase
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Fig. 4. (Color online.) Density dependence of the pressure (first row), the shear
viscosity (second row), and the specific shear viscosity (third row) at temperature
T = 10 MeV for isospin symmetric matter (δ = 0) (left column), neutron-rich mat-
ter (δ = 0.5) (middle column), and pure neutron matter (δ = 1) (right column) with
the stiffer symmetry energy x = 0. Solid lines are results including the liquid–gas
phase transition with ‘L’, ‘M’, and ‘G’ representing the liquid phase, the mixed phase,
and the gas phase, respectively. Dashed lines are results obtained by assuming the
liquid–gas phase transition does not happen inside the binodal surface.

Fig. 5. (Color online.) Temperature (upper panels) and density (lower panels) depen-
dence of the specific shear viscosity at different fixed pressures and temperatures,
respectively, in isospin symmetric matter (δ = 0), neutron-rich matter (δ = 0.5), and
pure neutron matter (δ = 1) for both symmetry energies x = 0 and x = 1.

transition does not happen. Also, the specific shear viscosity always
has a minimum value, and we found that this is due to the differ-
ence in the increase of the shear viscosity and the entropy density
with increasing density, even for the case of pure neutron matter
without a liquid–gas phase transition. Interestingly, the density at
which the specific shear viscosity has a minimum value is again
located at the boundary of the gas phase for δ = 0 and δ = 0.5
independent of the phase transition order.

Since different values of pressure and temperature are reached
in intermediate-energy heavy-ion collisions, it is of interest to
study the specific shear viscosity of nucleonic matter at the liquid–
gas phase transition under different conditions. In the upper panels
of Fig. 5, we compare the temperature dependence of the spe-
cific shear viscosity at different pressures for isospin symmetric
(δ = 0) and neutron-rich (δ = 0.5) nucleonic matter as well as
pure neutron matter (δ = 1) with both the stiffer (x = 0) and the
softer (x = 1) symmetry energies. It is seen that the temperature at
which the specific shear viscosity has a minimum increases with
increasing value of the fixed pressure, similar to the results in
Refs. [6,23]. Also, for larger fixed pressures the minimum value of
the specific shear viscosity is smaller for δ = 0 and δ = 0.5 but
seems to be independent of the pressure for δ = 1. In the lower
panels of Fig. 5, we display the density dependence of the specific
shear viscosity for different temperatures. Similarly, the density at
which the specific shear viscosity has a minimum value increases
with increasing value of the fixed temperature, and the minimum
value is smaller at higher fixed temperatures for δ = 0 and δ = 0.5
but is insensitive to the temperature for δ = 1. It is worthwhile
to note that with further increase in pressure or temperature, the
minimum value of the specific shear viscosity decreases and then
levels off until the pressure or the temperature is too high for the
nucleonic matter to have a liquid–gas phase transition. The result-
ing lower limit of the specific shear viscosity of nucleonic matter
is about 4–5 h̄/4π for isospin symmetric nucleonic matter and
is generally smaller than that in neutron-rich nucleonic matter as
discussed in Ref. [32]. As seen in panel (c) of Fig. 2, the stiffness
of the symmetry energy only slightly affects the gas side of the
phase boundary, thus having only negligible effects on the loca-
tion of the minimum value of the specific shear viscosity. However,
due to the difference in the phase coexistence region for the stiffer
(x = 0) and the softer (x = 1) symmetry energy, different specific
shear viscosities are obtained in the mixed phase region, with the
softer symmetry energy (x = 1) giving a larger value compared
with the stiffer symmetry energy (x = 0) as shown in panels (b)
and (e) of Fig. 5. For the pure neutron matter without the liquid–
gas phase transition under a fixed pressure, it looks like that the
specific shear viscosity for x = 1 is similar to that for x = 0 ob-
tained under a slightly smaller fixed pressure. On the other hand,
the specific shear viscosities from different symmetry energies are
the same for pure neutron matter compressed at a fixed tempera-
ture as indicated in panel (f) of Fig. 5.

To summarize, using the relaxation time approach, we have
studied the specific shear viscosity of neutron-rich nucleonic mat-
ter near its liquid–gas phase transition boundary constructed from
the Gibbs conditions. A valley shape is observed in the temper-
ature or density dependence of the specific shear viscosity even
in the absence of the phase transition. The value of the specific
shear viscosity suddenly drops at the first-order liquid–gas phase
transition temperature, while it varies smoothly for the second-
order phase transition. Moreover, the density dependence of the
symmetry energy is found to affect the value of the specific shear
viscosity of nucleonic matter in the mixed phase region, although
it has little effects on the location of its minimum. Our results are
expected to be useful for investigating the nature and signatures
of the liquid–gas phase transition in neutron-rich matter using
intermediate-energy heavy-ion collisions induced by rare isotopes.
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