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1T-TaS2 is a cluster Mott insulator on the triangular lattice with 13 Ta atoms forming a star of David
cluster as the unit cell. We derive a two-dimensional XXZ spin-1=2 model with a four-spin ring exchange
term to describe the effective low energy physics of a monolayer 1T-TaS2, where the effective spin-1=2
degrees of freedom arises from the Kramers degenerate spin-orbital states on each star of David. A large
scale density matrix renormalization group simulation is further performed on this effective model and we
find a gapless spin liquid phase with a spinon Fermi surface at a moderate to large strength region of the
four-spin ring exchange term. All peaks in the static spin structure factor are found to be located on the
“2kF” surface of a half-filled spinon on the triangular lattice. Experiments to detect the spinon Fermi
surface phase in 1T-TaS2 are discussed.
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Quantum spin liquid (QSL) was first proposed by
Anderson in 1973 [1] and it has inspired a great deal of
study of this state in frustrated magnetic systems. However,
because of the lack of an obvious order parameter and
symmetry breaking, QSL is very difficult to realize and
characterize in experiments. During the last forty years
people have only found a few QSL candidates [2–13], but
still with many controversies in the details. The ongoing
efforts are either in the direction to explore new QSL
candidate materials [14,15], or push our theoretical and
numerical understanding further.
It is well known that the geometric frustration on kagome,

pyrochlore, and triangular lattices, or spin anisotropy such as
the Kitaev type interaction on a honeycomb lattice [16],
play an important role to stabilize a QSL phase [17]. On a
kagome lattice, the isotropic nearest-neighbor antiferromag-
netic Heisenberg interaction is probably enough to result in a
QSL phase based on the density matrix renormalization
group (DMRG) [18–21] or variational Monte Carlo (VMC)
[22] calculations, while on a triangular lattice, this is not
the case. The ground state of the Heisenberg model on the
triangular lattice is the 120° AFM state [23–25]. Thus to
stabilize QSLs, more frustration, such as next-neighbor
frustrations [26–30], anisotropic [31], or highorder exchange
interaction is needed. The ring exchange terms become
important for systems close to the insulating side of the
Mott transition and it is suggested that the organics belongs
with this case [32,33]. Exact diagonalization and varia-
tional study of the triangular lattice spin model with ring
exchanges find a gapless QSL ground state with a spinon

Fermi surface [32]. Later, DMRG simulation on two and
four spin ladders andGutzwiller variational wave functions
calculation also find a similar QSL phase [34,35].
1T-TaS2 was proposed to be a QSL candidate by two of

us [10]. It has quasi-2D structure and each layer is made up
of a triangular lattice with Ta atoms. It is recognized that
13-site clusters are formed with a very narrow band near the
Fermi surface due to spin-orbit coupling (SOC) [36,37].
A weak residual repulsion interaction is enough to open a
Mott gap. Charge fluctuations induce high order exchange
processes for the local moments if the system is close to the
Mott transition (a weak Mott insulator). There are good
reasons to expect this to be the case for 1T-TaS2 because it
is the only insulator among all the CDW compounds and a
related material 1T-TaSe2 is metallic. This motivates us to
derive an effective spin model that includes the effect of
SOC and ring exchange. The geometric frustration and
high order exchange interaction and spin anisotropy are
new ingredients for the possible QSL physics in 1T-TaS2.
We use DMRG to explore the ground state properties of this
effective spin model.
Effective spin model of 1T-TaS2—In 1T-TaS2, the Ta

atoms form a planar triangular lattice sandwiched by
S atoms in an octahedral coordination. The Ta layer and
S layers have the ABC type stacking, which restores the
global inversion symmetry for the crystal structure. As the
temperature is lowered, 1T-TaS2 undergoes a series of
charge-density wave phase (CDW) transition and eventu-
ally entering the commensurate CDW phase around 180 K.
This is the Mott insulating state [38] where the lattice is
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deformed into a superlattice with the unit cell of a star of
David, formed by 13 Ta clustered atoms seen from Fig. S1
(b) of the Supplemental Material [39]. In the

ffiffiffiffiffi

13
p

×
ffiffiffiffiffi

13
p

star of David unit cell, the outer twelve Ta atoms have
displacement toward the centered Ta atom, which strength-
ens the interatomic bonds inside the star of David and
weakens others. As the early first principles bulk band
structure calculation for 1T-TaS2 indicates that the Ta 5d
orbitals are dominant in the conduction and valence bands
[37,44–47], the atomic SOC from dx2−y2 and dxy orbitals is
expected to modify the reconstructed band structure in the
commensurate CDW phase. Importantly, the joint effect
of lattice deformation and atomic SOC gives rise to the well
isolated narrow band at the Fermi level, as is shown in
Fig. S1(a) of the Supplemental Material [39]. As a result,
in the presence of weak repulsive interaction, the 1T-TaS2
is susceptible to the Mott-Hubbard transition and turns out
to be a Mott insulator.
In order to describe the Mott state in the 1T-TaS2, we

consider a single star of David unit cell as a supersite,

which is described by the intracluster tight-binding
Hamiltonian. Through numerical diagonalization, the
Wannier orbitals localized inside the star of David with
corresponding eigenenergies can be obtained in terms
of the linear combination of atomic orbitals from the 13 Ta
atoms. At the energy of the narrow band, it is found that
the Wannier orbitals Ψ↑

α and Ψ↓
β form the Kramers doublet

while the Wannier orbitals Ψ↓
α and Ψ↑

β are lifted in the
energy due to the atomic SOC. Here the expressions for
the two Wannier orbitals can be found in the Supplemental
Material [39]. Taking the two Wannier orbitals as the
basis, we can construct a two-orbital Hubbard model
with both interorbital and intraorbital interactions for
1T-TaS2 [39]. Since each star of David unit cell occupied
with the single state Ψ↑

α or Ψ↓
β would have the lowest

energy, all other occupation states can be perturbatively
dealt with through the Schrieffer-Wolff transformation. As
a result, the effective XXZ spin model with the anisotropy
modified ring exchange terms can be obtained as

H̃eff ¼ J
X

hi;ji
½Sxi Sxj þSyi S

y
j þð1þ γÞSziSzj�þK

X

hi;j;k;li
f½Sxi Sxj þSyi S

y
j þð1þ γÞSzi Szj�½SxkSxl þSykS

y
l þð1þ γÞSzkSzl �

þ ½SxjSxkþSyjS
y
kþð1þ γÞSzjSzk�½Sxi Sxl þSyi S

y
l þð1þ γÞSziSzl �− ðSi ·SkÞðSj ·SlÞg: ð1Þ

In the effective spin model, the J term is a XXZ
type nearest-neighbor interaction, where γ denotes spin
anisotropy, which arises as the ratio between the interorbital
and intraorbital interaction deviates from 1 [39]. Because of
the atomic SOC, the effective spin model does not have the
SU(2) spin rotational symmetry but preserves the U(1)
rotation around the z direction. Equation (1) is of general
interest as an effective spin Hamiltonian including SOC.
Therefore, given the large SOC in 1T-TaS2, the smallness
of γ was not obvious a priori and required a demonstration.
However, in practice it turns out that for 1T-TaS2 when the
interorbital and intraorbital interactions are in the same
order, the anisotropy γ remains smaller than 0.1 [39]. In the
large limit of atomic SOC, the anisotropy γ will be further
suppressed [39]. In the rest of the Letter wewill mostly treat
the case γ ¼ 0. The K term is the four spin ring exchange
term and is modified by the spin anisotropy. In general, the
strength of K=J depends on the ratio between the effective
in-plane hopping and interaction. In the weak Mott insu-
lating regime, the effective hopping and interaction are at
the same scale, which is verified in several first principle
calculations of 1T-TaS2 [46,47], and then the strength of
K=J is of order 1.Thedetails on thederivationof the effective
spin model and a comparing of parameters definition with
earlier studied ring exchange model [32,34,35] can be found
in the Supplemental Material [39].
For the spin model in Eq. (1), there are some well-known

limits. (i) the K=J ¼ 0, γ ¼ 0 case. In this case, we have a

pure Heisenberg model on the triangular lattice and the
ground state is the famous 120° AFM state [23–25]. (ii) the
K=J ¼ 0,γ → ∞ case. When γ ¼ ∞, we have a pure Ising
model on the triangular lattice. Because of the geometry
frustration, the Ising spin does not order at zero temper-
ature. As this paramagnetic state is highly degenerate, small
perturbation may drive it to an ordered state via the order
by disorder [48]. (iii) the K=J ¼ ∞, γ ¼ 0 case. In this
case, we only have isotropic four-spin exchange terms. The
ground state in the classical limit has been discussed in
Ref. [49]. As in real materials, K is usually in the same
order of J or smaller, this case is less relevant.
Results.—For general values of K=J and γ, the ground

states are not known. To identify all possible ground states
over a wide range of parameter space, we use DMRG to
solve the effective spin model (1). The matrix product state
(MPS) representation is used in our DMRG simulation.
Because of the Uð1Þ spin rotational symmetry, the model
has a total Sz conservation, and all results are obtained in
the Sztot ¼ 0 sector [50]. We use the cylindrical geometry
with open boundary condition in the x direction (see
Fig. S4 of the Supplemental Material [39]). We use a bond
dimension up tom ¼ 5120 and all results are obtained with
a truncation error in or less than the order of 10−5.
To detect possible orders, we measure the spin-spin

correlation hSi · Si0 i, the dimer-dimer correlation hDbðiÞ
Dbði0Þi − hDbi2 where DbðiÞ ¼ Si · Siþδ (where b ¼ x; y;
xy denotes δ ¼ x̂, ŷ, or, x̂þ ŷ), and the chirality-chirality
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correlation hX△X△0 i where X△ ¼ Si · ðSj × SkÞ (with i; j;
k ∈ △). The phase diagram in Fig. 1 shows the results that
we obtain mainly from six wide systems (Ly ¼ 6) and
confirm in eight wide systems (Ly ¼ 8). Our work extends
previous results done on four wide systems [34,35]. The
details of finite size scaling to obtain the phase diagram can
be found in the Supplemental Material [39]. It turns out the
small anisotropy (γ ≲ 0.1) only shifts the phase transition
point slightly; thus we mainly focus on the isotropic
case (γ ¼ 0). At small K=J, the ground state is the 120°
AFM state. In the intermediate value of K=J, a staggered
valence bond solid (VBS) phase emerges. When
K=J > 0.3, we enter a QSL state with a spinon Fermi
surface (SFS). This state was called a spin Bose metal in
some earlier literature [34,35].
We here focus on the SFS phase. In the SFS phase, all

structure factors, including the spin, dimer, and chirality,
shows no features of ordering. Thus we can rule out all
spin, dimer, and chirality orders in this phase. Second, the
real space correlations of spin-spin and dimer-dimer show
long-range correlations and generally can be well fitted
with power laws, as shown in Fig 2. The long range
correlation is consistent with a gapless phase rather than
a gapped one. In addition to a global power law decay in
all these correlation functions, there are modulations and
sign changes superposed over them. In the following, we
will see the modulations in the spin correlator are actually
the consequence of “2kF” singularity due to the existence
of a spinon Fermi surface. The modulation of the dimer
correlator is discussed further in the Supplemental
Material [39]. Thus the scatter of the data in Fig. 2 is
due to these modulations and not due to numerical noise.
As expected for a six-spin correlator, the chirality-
chirality correlator shows much more rapid decay and
can be fitted either with a large power law or an exponential.
In addition, it exhibits sign changes. Thus we cannot
interpret the chirality correlator in terms of the gauge flux
correlator which is expected to have a power law decaywith
no sign changes in the asymptotic long distance limit.
Apparently the system size is too small to reach that limit.
Another evidence for a gapless spin liquid comes from

the finite static spin susceptibility. We calculate static spin
susceptibility by applying small magnetic filed along the z
direction. We find that the magnetic moment density and

magnetic fields obey a linear behavior and we get a finite
static spin susceptibility (χ ≈ 0.22 for K=J ¼ 0.8, where J
and gμB are set to 1). Considering a half-filled free spinon
band theory (static spin susceptibility is predicted to be
ðgμBÞ2Nð0Þ=4, where density of states at Fermi surface is
about Nð0Þ ≈ ð1=1.65πtÞ with t the spinon hopping param-
eter), we can estimate the spinon hopping t to be ∼0.22J.
This estimate is not precise because we expect Fermi liquid
corrections to the free spinon expression for the suscep-
tibility. The important point is that the finite spin suscep-
tibility is consistent with a gapless spin liquid with a spinon
Fermi surface.
In order to confirm the SFS state, we look for 2kF peaks

in the spin structure factor SðkÞ. To simplify the discussion,
we write k in the basis of reciprocal lattice primitive vectors
b1 and b2, namely, k ¼ k1b1 þ k2b2. We analyze the spin
structure factor SðkÞ for each fixed k2 line, and pick out all
peaks, as is shown in Figs. 3(a) to 3(d). The positions of
all those peaks are plotted in Fig. 3(e). Here results of both
Ly ¼ 6 and Ly ¼ 8 wide systems are plotted together.
All the points are located on the 2kF surface of a half-filled
spinon on the triangular lattice, within finite size resolution.
This strong signature of the existence of the spinon Fermi
surface is a definitive evidence for the SFS phase.
We point out that there is an unexpected feature of the spin

structure factor, namely there is no peak at the 2kF position
along the b1 line. This is seen in Fig. 3(d) (k2 ¼ 0 curve)
and agrees with earlier results on four wide systems [35].
An interesting possibility is that a gap is open along the
Γ (0,0) to M (1

2
; 0) directions due to spinon pairing. The

Amperean scenario proposed by Lee et al. [51] will create
a set of gaps separated by spinon Fermi arcs. In this case

K/J
AFM VBS SFS

0 4.0 8.00.2 0.6

x

y

FIG. 1. Phase diagram for the isotropic case (γ ¼ 0), while for
the small anisotropy case related to real materials 1T-TaS2 the
phase diagram is similar. It is mainly obtained from six wide
systems and confirmed in eight wide systems.
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FIG. 2. (a) Real space decay of the spin-spin and dimer-dimer
correlation, along the (1,0) direction. The absolute values are
plotted, with open symbols and filled symbols denoting that the
original values are negative or positive, respectively. The param-
eters are Lx ¼ 24, Ly ¼ 6, K=J ¼ 0.6, γ ¼ 0. In the log-log plot,
all the correlation decays can be fitted with power law. Two
power law lines are plotted to guide the eyes, the top black dashed
line is ji − jj−1.5, the bottom black dashed line is ji − jj−3.
(b) Real space decay of the chirality-chirality correlation along
the (1,0) and (1,1) directions with the same parameters. It can be
well fitted by either a high power law ji − jj−5 (red dashed line) or
an exponential decay 10−0.3ji−jj (black dashed line).
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the spin liquidwill belong to the class of Z2QSLwith spinon
Fermi surface. Further discussion of this possibility and its
relation to the structure of the dimer correlator can be found
in the Supplemental Material [39].
The partially filled spinon Fermi surface have an infinite

number of gapless modes, but on a finite width cylinder,
there are only finite numbers of them. A fitting of central
charge c has been done by analyzing the entanglement
entropy calculated with DMRG, which measures the
number of gapless modes and is found to increase roughly
linearly with the width of the cylinder, consistent with the
SFS phase. As discussed in the Supplemental Material [39],
the central charge can, in principle, distinguish between the
U(1) and Z2 QSL. Unfortunately, in the SFS phase the
entanglement entropy converges slowly when we increase
the number of states in DMRG, and it is not possible to
extract the central charge unambiguously. On the other
hand, the positions of peaks as well as the spin structure
factor converge faster, as shown in Fig 3.
Another interesting finding is the VBS phase. As shown

in the phase diagram (Fig. 1), at intermediateK=J, there is a
VBS phase that is revealed by the dimer-dimer correlation.
We clearly observe y-direction dimer structure with a sharp
peak at theM (1

2
b1 þ 1

2
b2) point [39]. From the continuous

dependence of energy on K=J in our DMRG simulation on
finite sizes, it is very likely that the transition from AFM to
VBS or VBS to SFS is a continuous one, where the AFM to
VBS transition may generate a deconfined quantum critical
point (DQCP) [52] and is worth further study.

As we have previously mentioned, the anisotropy in
1T-TaS2 is actually small. We have explored the effect of
this small anisotropy to the phase diagram, and found that
the small anisotropy moderately suppresses the region of
the VBS phase and thus helps stabilize the QSL phase.
Discussion and conclusions.—We have derived the

effective spin model for 1T-TaS2. It is an XXZ model
with four-spin ring exchange on the triangular lattice. This
effective model supports a SFS ground state with spinon
Fermi surface at moderate to large K=J regions. We clearly
observe the singular wave vectors in the spin structure
factor from the 2kF surface that can be described by a half-
filled spinon with a uniform hopping on the triangular
lattice.
Finally, we remark on the applicability of these results to

1T-TaS2. Our monolayer model is directly applicable to
monolayer 1T-TaS2 which can be grown by MBE. For bulk
samples, if the interlayer coupling is weaker than the intra-
layer exchange J, it is possible that the ground state is made
up of weakly coupled layers of SFS. It will be of great
interest to use neutron scattering to look for the 2kF peaks
in the static spin structure factor SðkÞ. Furthermore, the SFS
state is expected to have low energy excitations concentrated
around 2kF. Gapless excitations are also expected for
k < 2kF and to extend to an energy scale which is a fraction
of the spinon bandwidth. This is seen in calculations based
on the free spinon model [53]. The SFS is expected to have
finite spin susceptibility. Experimentally there is indeed a
residual temperature independent susceptibility [11], but it is
not known howmuch of it is spin or orbital in origin.We also
expect a linear term γ in the specific heat. This is seen
experimentally but it is suppressed by a magnetic field [13].
This contribution has been explained as mainly due to the
local moment [54]. If we use the large magnetic field limit
to extract an intrinsic γ, we find a value of about 0:1 mJ=K2

per mole of TaS2 or 1.3 mJ=K2 per mole of star of David
cluster. This is about a factor of 10 smaller than what is
observed in the organics [2,3], suggesting that the exchange
energy scale is a factor of 10 larger. This value of γ is on the
small side and had prompted two of us to rule out a spinon
Fermi surface in an earlier study [10]. The small value of γ
may simply reflect a large exchange scale. Another in-
triguing option is that the Fermi surface has been partially
gapped in the direction of the M point by spinon pairing, as
discussed earlier in this Letter. From the experimental side,
we are encouraged by a recent report of a linear T term in the
thermal conductivity [55], which is usually taken as a
signature of mobile gapless fermions. In an insulator the
only plausible candidate is a full or partial spinon Fermi
surface. While an earlier study reported a null result [12], we
note that the discrepancy may be due to sample quality, since
thermal conductivity depends linearly on the scattering time,
and is therefore sensitive to the amount of magnetic
impurities which strongly scatter the spinons.
An exciting future avenue is the doping of the weak Mott

insulator. Doping of the spinon Fermi surface spin liquid
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will likely lead to a correlation driven superconductor [56].
As discussed earlier [10], the interesting regime is a doping
concentration of about 10% per cluster which is less than
1% per Ta. Carrier localization is a serious challenge at
such a low doping level and gating of atomically thin
samples may be the preferred method. The recent success
of inducing superconductivity by doping the weak Mott
insulator in twisted bilayer graphene is certainly encour-
aging [57]. The 1T-TaS2 system has the advantage of
having a much higher temperature scale compared with
graphene and the organics.
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