125,620 research outputs found
Gluonic probe for the short range correlation in nucleus
We investigate the gluonic probe to the nucleon-nucleon short range correlation (SRC) in nucleus through heavy flavor production in deep inelastic scattering (DIS). The relevant EMC effects of [Formula presented] structure function will provide a universality test of the SRCs which have been extensively studied in the quark-channel. These SRCs can also be studied through the sub-threshold production of heavy flavor in eA collisions at the intermediate energy electron-ion collider, including open Charm and J/ψ (ϒ) production
Analytical smoothing effect of solution for the boussinesq equations
In this paper, we study the analytical smoothing effect of Cauchy problem for
the incompressible Boussinesq equations. Precisely, we use the Fourier method
to prove that the Sobolev H 1-solution to the incompressible Boussinesq
equations in periodic domain is analytic for any positive time. So the
incompressible Boussinesq equation admet exactly same smoothing effect
properties of incompressible Navier-Stokes equations
Construction of optimal multi-level supersaturated designs
A supersaturated design is a design whose run size is not large enough for
estimating all the main effects. The goodness of multi-level supersaturated
designs can be judged by the generalized minimum aberration criterion proposed
by Xu and Wu [Ann. Statist. 29 (2001) 1066--1077]. A new lower bound is derived
and general construction methods are proposed for multi-level supersaturated
designs. Inspired by the Addelman--Kempthorne construction of orthogonal
arrays, several classes of optimal multi-level supersaturated designs are given
in explicit form: Columns are labeled with linear or quadratic polynomials and
rows are points over a finite field. Additive characters are used to study the
properties of resulting designs. Some small optimal supersaturated designs of
3, 4 and 5 levels are listed with their properties.Comment: Published at http://dx.doi.org/10.1214/009053605000000688 in the
Annals of Statistics (http://www.imstat.org/aos/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Empirical analysis of the ship-transport network of China
Structural properties of the ship-transport network of China (STNC) are
studied in the light of recent investigations of complex networks. STNC is
composed of a set of routes and ports located along the sea or river. Network
properties including the degree distribution, degree correlations, clustering,
shortest path length, centrality and betweenness are studied in different
definition of network topology. It is found that geographical constraint plays
an important role in the network topology of STNC. We also study the traffic
flow of STNC based on the weighted network representation, and demonstrate the
weight distribution can be described by power law or exponential function
depending on the assumed definition of network topology. Other features related
to STNC are also investigated.Comment: 20 pages, 7 figures, 1 tabl
Stochastic stability of viscoelastic systems under Gaussian and Poisson white noise excitations
As the use of viscoelastic materials becomes increasingly popular, stability of viscoelastic structures under random loads becomes increasingly important. This paper aims at studying the asymptotic stability of viscoelastic systems under Gaussian and Poisson white noise excitations with Lyapunov functions. The viscoelastic force is approximated as equivalent stiffness and damping terms. A stochastic differential equation is set up to represent randomly excited viscoelastic systems, from which a Lyapunov function is determined by intuition. The time derivative of this Lyapunov function is then obtained by stochastic averaging. Approximate conditions are derived for asymptotic Lyapunov stability with probability one of the viscoelastic system. Validity and utility of this approach are illustrated by a Duffing-type oscillator possessing viscoelastic forces, and the influence of different parameters on the stability region is delineated
Quantum spin mixing in a binary mixture of spin-1 atomic condensates
We study quantum spin mixing in a binary mixture of spin-1 condensates
including coherent interspecies mixing process, using the familiar spinor
condensates of Rb and Na atoms in the ground lower hyperfine F=1
manifolds as prototype examples. Within the single spatial mode approximation
for each of the two spinor condensates, the mixing dynamics reduce to that of
three coupled nonlinear pendulums with clear physical interpretations. Using
suitably prepared initial states, it is possible to determine the interspecies
singlet-pairing as well as spin-exchange interactions from the subsequent
mixing dynamics.Comment: 6 pages, 3 figure
Sub-threshold J/ψ and ϒ production in γA collisions
We study sub-threshold heavy quarkonium (J/ψ and ϒ) photo-productions in γA collisions as an independent test of the universality of the nucleon-nucleon short range correlation (SRC) in nuclear scattering processes. Just below the γp threshold, the cross section is dominated by the mean field contribution of nucleons inside the nucleus. The SRC contributions start to dominate at lower photon energies, depending on the fraction of the SRC pairs in the target nucleus. We give an estimate of the cross sections in the sub-threshold region both for J/ψ and ϒ. This may be helpful for future measurements at JLab as well as at the Electron-Ion Collider in the U.S., and especially in China
- …