6,282 research outputs found

    Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review

    Full text link
    © 2016 Elsevier B.V. This review focuses on the removal of emerging contaminants (ECs) by biological, chemical and hybrid technologies in effluents from wastewater treatment plants (WWTPs). Results showed that endocrine disruption chemicals (EDCs) were better removed by membrane bioreactor (MBR), activated sludge and aeration processes among different biological processes. Surfactants, EDCs and personal care products (PCPs) can be well removed by activated sludge process. Pesticides and pharmaceuticals showed good removal efficiencies by biological activated carbon. Microalgae treatment processes can remove almost all types of ECs to some extent. Other biological processes were found less effective in ECs removal from wastewater. Chemical oxidation processes such as ozonation/H2O2, UV photolysis/H2O2 and photo-Fenton processes can successfully remove up to 100% of pesticides, beta blockers and pharmaceuticals, while EDCs can be better removed by ozonation and UV photocatalysis. Fenton process was found less effective in the removal of any types of ECs. A hybrid system based on ozonation followed by biological activated carbon was found highly efficient in the removal of pesticides, beta blockers and pharmaceuticals. A hybrid ozonation-ultrasound system can remove up to 100% of many pharmaceuticals. Future research directions to enhance the removal of ECs have been elaborated

    Partial nitrification granular sludge reactor as a pretreatment for anaerobic ammonium oxidation (Anammox): Achievement, performance and microbial community

    Full text link
    © 2018 Elsevier Ltd Partial nitrification granular sludge was successfully cultivated in a sequencing batch reactor as a pretreatment for anaerobic ammonium oxidation (Anammox) through shortening settling time. After 250-days operation, the effluent NH4+-N and NO2−-N concentrations were average at 277.5 and 280.5 mg/L with nitrite accumulation rate of 87.8%, making it as an ideal influent for Anammox. Simultaneous free ammonia (FA) and free nitrous acid (FNA) played major inhibitory roles on the activity of nitrite oxidizing bacteria (NOB). The MLSS and SVI30 of partial nitrification reactor were 14.6 g/L and 25.0 mL/g, respectively. Polysaccharide (PS) and protein (PN) amounts in extracellular polymeric substances (EPS) from granular sludge were about 1.3 and 2.8 times higher than from seed sludge. High-throughput pyrosequencing results indicated that Nitrosomonas affiliated to the ammonia oxidizing bacteria (AOB) was the predominant group with a proportion of 24.1% in the partial nitrification system

    Synthesis of Polycyclic Aromatic Hydrocarbons by Phenyl Addition-Dehydrocyclization: The Third Way.

    Get PDF
    Polycyclic aromatic hydrocarbons (PAHs) represent the link between resonance-stabilized free radicals and carbonaceous nanoparticles generated in incomplete combustion processes and in circumstellar envelopes of carbon rich asymptotic giant branch (AGB) stars. Although these PAHs resemble building blocks of complex carbonaceous nanostructures, their fundamental formation mechanisms have remained elusive. By exploring these reaction mechanisms of the phenyl radical with biphenyl/naphthalene theoretically and experimentally, we provide compelling evidence on a novel phenyl-addition/dehydrocyclization (PAC) pathway leading to prototype PAHs: triphenylene and fluoranthene. PAC operates efficiently at high temperatures leading through rapid molecular mass growth processes to complex aromatic structures, which are difficult to synthesize by traditional pathways such as hydrogen-abstraction/acetylene-addition. The elucidation of the fundamental reactions leading to PAHs is necessary to facilitate an understanding of the origin and evolution of the molecular universe and of carbon in our galaxy

    Enhancement strategies for hydrogen production from wastewater: A review

    Full text link
    © 2016 Bentham Science Publishers. This mini review focuses on the current developments in the field of dark fermentation technologies using wastewater as carbon and nutrient source in batch reactors. Besides, the major microbiota (pure, enriched mixed, co and mixed cultures) involved in the process have been emphasized. Additionally, problems associated with the lower production performances and the overcoming strategies applied to enhance the production rate (HPR) and yield (HY) bybio-augmentation, immobilization, enrichment technique and nano particles (NP) addition were also discussed. This mini review provides more insights about the recent developments in the dark fermentative hydrogen production (DHFP) process and their advantages in a brief manner. The perspective towards the development of sustainable society by using bioH2 technology is enlightened

    Performance, microbial community and fluorescent characteristic of microbial products in a solid-phase denitrification biofilm reactor for WWTP effluent treatment

    Full text link
    © 2018 Microbial products, i.e. extracellular polymeric substance (EPS) and soluble microbial product (SMP), have a significant correlation with microbial activity of biologically based systems. In present study, the spectral characteristics of two kinds of microbial products were comprehensively evaluated in a solid-phase denitrification biofilm reactor for WWTP effluent treatment by using poly (butylene succinate) (PBS) as carbon source. After the achievement of PBS-biofilm, nitrate and total nitrogen removal efficiencies were high of 97.39 ± 1.24% and 96.38 ± 1.1%, respectively. The contents of protein and polysaccharide were changed different degrees in both LB-EPS and TB-EPS. Excitation-emission matrix (EEM) implied that protein-like substances played a significant role in the formation of PBS-biofilm. High-throughput sequencing result implied that the proportion of denitrifying bacteria, including Simplicispira, Dechloromonas, Diaphorobacter, Desulfovibrio, increased to 9.2%, 7.4%, 4.8% and 3.6% in PBS-biofilm system, respectively. According to EEM-PARAFAC, two components were identified from SMP samples, including protein-like substances for component 1 and humic-like and fulvic acid-like substances for component 2, respectively. Moreover, the fluorescent scores of two components expressed significant different trends to reaction time. Gas chromatography-mass spectrometer (GC-MS) implied that some new organic matters were produced in the effluent of SP-DBR due to biopolymer degradation and denitrification processes. The results could provide a new insight about the formation and stability of solid-phase denitrification PBS-biofilm via the point of microbial products

    Biosorption performance evaluation of heavy metal onto aerobic granular sludge-derived biochar in the presence of effluent organic matter via batch and fluorescence approaches

    Full text link
    © 2017 Elsevier Ltd In present study, the biosorption process of Cu(II) onto aerobic granular sludge-derived biochar was evaluated in the absence and presence of effluent organic matter (EfOM) by using batch and fluorescence approaches. It was found that EfOM gave rise to enhancement of Cu(II) removal efficiency onto biochar, and the sorption data were better fitted with pseudo-second order model and Freundlich equation, in despite of the absence and presence of EfOM. According to excitation-emission matrix (EEM), EfOM was mainly comprised by humic-like substances and fulvic-like substances and their intensities were reduced in the addition of biochar and Cu(II) from batch biosorption process. Synchronous fluorescence spectra coupled to two-dimensional correlation spectroscopy (2D-COS) further implied that a successive fluorescence quenching was observed in various EfOM fractions with the increasing Cu(II) concentration. Moreover, fulvic-like fraction was more susceptibility than other fractions for fluorescence quenching of EfOM

    Removal mechanisms and plant species selection by bioaccumulative factors in surface flow constructed wetlands (CWs): In the case of triclosan

    Full text link
    © 2015 Elsevier B.V. Plants can bioaccumulate triclosan and bond with microbes and sediments in constructed wetlands (CWs) as well. However, little is known regarding the species-specific removal mechanism of CWs components and the selection of suitable wetland plant species for triclosan disposal. In this work, the use of bioaccumulation factors (BAFs) and biota to sediment accumulation factors (BSAFs) for choosing the best triclosan removal plant species was studied in laboratory-scale CWs. By the end of the experiment, over 80% of triclosan was removed and a specie-effect distribution was revealed in CWs with emergent, submerged and floating plants. By mass balance calculation, negative correlation between triclosan concentration in plants and degradation process was observed. The significant correlations between Log BSAFs values and triclosan concentration in plants or degradation contribution made it possible and reasonable in wetland plants selection. Introductions on plant species were provided considering the target removal process or regulation method. This work provided new information on plant species selection in CWs for triclosan removal or its emergency remediation by using bioaccumulative factors

    Spectroscopic characteristics of dissolved organic matter from aquaculture wastewater and its interaction mechanism to chlorinated phenol compound

    Full text link
    © 2017 In present study, the characteristics of dissolved organic matter (DOM) from aquaculture wastewater and its interaction to 4-chlorophenol (4-CP) was evaluated via a spectroscopic approach. According to EEM-PARAFAC analysis, two components were derived from the interaction samples between DOM and 4-CP, including humic-like and fulvic-like substances for component 1 and protein-like substances for component 2, respectively. The fluorescence intensity scores of two PARAFAC-derived components decreased with increasing 4-CP concentration. Synchronous fluorescence coupled to two-dimensional correlation spectroscopy (2D-COS) implied that DOM fractions quenched different degrees and occurred in the order of fulvic-like and humic-like fractions > protein-like fraction. Moreover, the quenching mechanisms were mainly caused by static quenching process. It was also found from Fourier transform infrared spectroscopy that the main functional groups for interaction between 4-CP and DOM were O–H stretching and C[dbnd]O stretching vibration. The obtained results provided a spectroscopic approach for characterizing the interaction between organic pollutant and DOM from aquaculture wastewater

    System performance and microbial community succession in a partial nitrification biofilm reactor in response to salinity stress

    Full text link
    © 2018 Elsevier Ltd The system performance and microbial community succession in a partial nitrification biofilm reactor in response to salinity stress was conducted. It was found that the NH 4+ -N removal efficiency decreased from 98.4% to 42.0% after salinity stress increased to 20 g/L. Specific oxygen uptake rates suggested that AOB activity was more sensitive to the stress of salinity than that of NOB. Protein and polysaccharides contents showed an increasing tendency in both LB-EPS and TB-EPS after the salinity exposure. Moreover, EEM results indicated that protein-like substances were the main component in LB-EPS and TB-EPS as self-protection in response to salinity stress. Additionally, humic acid-like substances were identified as the main component in the effluent organic matter (EfOM) of partial nitrification biofilm, whereas fulvic acid-like substances were detected at 20 g/L salinity stress. Microbial community analysis found that Nitrosomonas as representative species of AOB were significantly inhibited under high salinity condition

    Centralizer's applications to the (b, c)-inverses in rings

    Full text link
    [EN] We give several conditions in order that the absorption law for one sided (b,c)-inverses in rings holds. Also, by using centralizers, we obtain the absorption law for the (b,c)-inverse and the reverse order law of the (b,c)-inverse in rings. As applications, we obtain the related results for the inverse along an element, Moore-Penrose inverse, Drazin inverse, group inverse and core inverse.This research is supported by the National Natural Science Foundation of China (no. 11771076 and no. 11871301). The first author is grateful to China Scholarship Council for giving him a scholarship for his further study in Universitat Politecnica de Valencia, Spain.Xu, S.; Chen, J.; BenĂ­tez LĂłpez, J.; Wang, D. (2019). Centralizer's applications to the (b, c)-inverses in rings. Revista de la Real Academia de Ciencias Exactas, FĂ­sicas y Naturales. 113(3):1739-1746. https://doi.org/10.1007/s13398-018-0574-0S173917461133Baksalary, O.M., Trenkler, G.: Core inverse of matrices. Linear Multilinear Algebra 58(6), 681–697 (2010)BenĂ­tez, J., Boasso, E.: The inverse along an element in rings with an involution, Banach algebras and C∗C^* C ∗ -algebras. Linear Multilinear Algebra 65(2), 284–299 (2017)BenĂ­tez, J., Boasso, E., Jin, H.W.: On one-sided (B,C)(B, C) ( B , C ) -inverses of arbitrary matrices. Electron. J. Linear Algebra 32, 391–422 (2017)Boasso, E., KantĂșn-Montiel, G.: The (b,c)(b, c) ( b , c ) -inverses in rings and in the Banach context. Mediterr. J. Math. 14, 112 (2017)Chen, Q.G., Wang, D.G.: A class of coquasitriangular Hopf group algebras. Comm. Algebra 44(1), 310–335 (2016)Chen, J.L., Ke, Y.Y., Mosić, D.: The reverse order law of the (b,c)(b, c) ( b , c ) -inverse in semigroups. Acta Math. Hung. 151(1), 181–198 (2017)Deng, C.Y.: Reverse order law for the group inverses. J. Math. Anal. Appl. 382(2), 663–671 (2011)Drazin, M.P.: Pseudo-inverses in associative rings and semigroups. Am. Math. Mon. 65, 506–514 (1958)Drazin, M.P.: A class of outer generalized inverses. Linear Algebra Appl. 436, 1909–1923 (2012)Drazin, M.P.: Left and right generalized inverses. Linear Algebra Appl. 510, 64–78 (2016)Jin, H.W., BenĂ­tez, J.: The absorption laws for the generalized inverses in rings. Electron. J. Linear Algebra 30, 827–842 (2015)Johnson, B.E.: An introduction to the theory of centralizers. Proc. Lond. Math. Soc. 14, 299–320 (1964)Ke, Y.Y., Cvetković-Ilić, D.S., Chen, J.L., ViĆĄnjić, J.: New results on (b,c)(b, c) ( b , c ) -inverses. Linear Multilinear Algebra 66(3), 447–458 (2018)Ke Y.Y., ViĆĄnjić J., Chen J.L.: One sided (b,c)(b,c) ( b , c ) -inverse in rings (2016). arXiv:1607.06230v1Liu, X.J., Jin, H.W., Cvetković-Ilić, D.S.: The absorption laws for the generalized inverses. Appl. Math. Comput. 219, 2053–2059 (2012)Mary, X.: On generalized inverse and Green’s relations. Linear Algebra Appl. 434, 1836–1844 (2011)Mary, X., PatrĂ­cio, P.: Generalized inverses modulo H\cal{H} H in semigroups and rings. Linear Multilinear Algebra 61(8), 1130–1135 (2013)Mosić, D., Cvetković-Ilić, D.S.: Reverse order law for the Moore-Penrose inverse in C∗C^* C ∗ -algebras. Electron. J. Linear Algebra 22, 92–111 (2011)Rakić, D.S.: A note on Rao and Mitra’s constrained inverse and Drazin’s (b,c)(b, c) ( b , c ) -inverse. Linear Algebra Appl. 523, 102–108 (2017)Rakić, D.S., Dinčić, N.Č., Djordjević, D.S.: Group, Moore–Penrose, core and dual core inverse in rings with involution. Linear Algebra Appl. 463, 115–133 (2014)Wang, L., Castro-GonzĂĄlez, N., Chen, J.L.: Characterizations of outer generalized inverses. Can. Math. Bull. 60(4), 861–871 (2017)Wei, Y.M.: A characterization and representation of the generalized inverse AT,S(2)A^{(2)}_{T, S} A T , S ( 2 ) and its applications. Linear Algebra Appl. 280, 87–96 (1998)Xu, S.Z., BenĂ­tez, J.: Existence criteria and expressions of the (b,c)(b, c) ( b , c ) -inverse in rings and its applications. Mediterr. J. Math. 15, 14 (2018)Zhu, H.H., Chen, J.L., PatrĂ­cio, P.: Further results on the inverse along an element in semigroups and rings. Linear Multilinear Algebra 64(3), 393–403 (2016)Zhu, H.H., Chen, J.L., PatrĂ­cio, P.: Reverse order law for the inverse along an element. Linear Multilinear Algebra 65, 166–177 (2017)Zhu, H.H., Chen, J.L., PatrĂ­cio, P., Mary, X.: Centralizer’s applications to the inverse along an element. Appl. Math. Comput. 315, 27–33 (2017)Zhu, H.H., Zhang, X.X., Chen, J.L.: Centralizers and their applications to generalized inverses. Linear Algebra Appl. 458, 291–300 (2014
    • 

    corecore