110 research outputs found

    Helmert Variance Component Estimation for Multi-GNSS Relative Positioning

    Get PDF
    The Multi-constellation Global Navigation Satellite System (Multi-GNSS) has become the standard implementation of high accuracy positioning and navigation applications. It is well known that the noise of code and phase measurements depend on GNSS constellation. Then, Helmert variance component estimation (HVCE) is usually used to adjust the contributions of diÂżerent GNSS constellations by determining their individual variances of unit weight. However, HVCE requires a heavy computation load. In this study, the HVCE posterior weighting was employed to carry out a kinematic relative Multi-GNSS positioning experiment with six short-baselines from day of year (DoY) 171 to 200 in 2019. As a result, the HVCE posterior weighting strategy improved Multi-GNSS positioning accuracy by 20.5%, 15.7% and 13.2% ineast-north-up(ENU) components, compared to an elevation-dependent (ED) priori weighting strategy. We observed that the weight proportion of both code and phase observations for each GNSS constellation were consistent during the entire 30 days, which indicates that the weight proportions of both code and phase observations are stable over a long period of time. It was also found that the quality of a phase observation is almost equivalent in each baseline and GNSS constellation, whereas that of a code observation is different. In order to reduce the time consumption off the HVCE method without sacrificing positioning accuracy, the stable variances of unit weights of both phase and code observations obtained over 30 days were averaged and then frozen as a priori information in the positioning experiment. The result demonstrated similar ENU improvements of 20.0%, 14.1% and 11.1% with respect to the ED method but saving 88% of the computation time of the HCVE strategy. Our study concludes with the observations that the frozen variances of unit weight (FVUW) could be applied to the positioning experiment for the next 30 days, that is, from DoY 201 to 230 in 2019, improving the positioning ENU accuracy of the ED method by 18.1%, 13.2% and 10.6%, indicating the effectiveness of the FVUW.Peer ReviewedPostprint (published version

    (multi-functional GPS, (Galileo) software) ; software user manual ; Version of 2004

    Get PDF
    repor

    Inter-system biases solution strategies in multi-GNSS kinematic precise point positioning

    Get PDF
    Estimating inter-system biases (ISBs) is important in multi-constellation Global Navigation Satellite System (GNSS) processing. The present study aims to evaluate and screen out an optimal estimation strategy of ISB for multi-GNSS kinematic precise point positioning (PPP). The candidate strategies considered for ISB estimation are white noise process (ISB-WN), random walk process (ISB-RW), constant (ISB-CT) and eliminated by between-satellite single-differenced observations (ISB-SD). We first present the mathematical model of ISB derived from the observation combination among different GNSSs, and we demonstrate the equivalence between ISB-WN and ISB-SD in the Kalman filter. In order to evaluate the performance of these four ISB solution strategies, we implement kinematic PPP with 1-month static data from 112 International GNSS service stations and two-hour dynamic vehicular data collected in an urban case. For comparison, precise orbit and clock products from the Center for Orbit Determination in Europe (CODE), GeoForschungsZentrum in Germany (GFZ) and Wuhan University (WHU) are employed in our experiments. The results of static tests show that the positioning accuracy is comparable among the four strategies, but ISB-CT performs slightly better in convergence time. In the kinematic test, there are more cycle slips than static test, and the ISB-CT improves the positioning accuracy by 15.7%, 38.9% and 63.2% in east, north and up components, and reduces the convergence time by 60.1% comparing with the other strategies. Moreover, both the static and kinematic tests prove the consistence among CODE, GFZ and WHU precise products and the equivalence between ISB-WN and ISB-SD strategies. Finally, more, i.e., the same amount of cycle slips as for the dynamic data, are artificially added to the static data to conduct the pseudo-kinematic test. The result shows that ISB-CT improves the positioning accuracy and convergence time by 19.2% and 24.4%, respectively.The study is funded by Laoshan Laboratory (LSKJ202205104, LSKJ202205104_01), National Key Research and Development Program of China (2020YFB0505800, 2020YFB0505804), National Natural Science Foundation of China (42004012), Natural Science Foundation of Shandong Province, China (ZR2020QD048) and by the project RTI2018-094295-B-I00 funded by the MCIN/AEI 1013039/501100011033 which is co-funded by the FEDER program.Peer ReviewedPostprint (published version

    Revisit the calibration errors on experimental slant total electron content (TEC) determined with GPS

    Get PDF
    This is a pre-print of an article published in GPS Solutions. The final authenticated version is available online at: https://doi.org/10.1007/s10291-018-0753-7. The study is funded by National Key Research and Development Program of China (2016YFB0501902), National Natural Science Foundation of China (41574025, 41574013, 41731069), Spanish Ministry of Science and Innovation project (CGL2015-66410-P), The Hong Kong RGC Joint Research Scheme (E-PolyU501/16) and State Key Laboratory of Geo-Information Engineering (SKLGIE2015-M-2-2).The calibration errors on experimental slant total electron content (TEC) determined with global positioning system (GPS) observations is revisited. Instead of the analysis of the calibration errors on the carrier phase leveled to code ionospheric observable, we focus on the accuracy analysis of the undifferenced ambiguity-fixed carrier phase ionospheric observable determined from a global distribution of permanent receivers. The results achieved are: (1) using data from an entire month within the last solar cycle maximum, the undifferenced ambiguity-fixed carrier phase ionospheric observable is found to be over one order of magnitude more accurate than the carrier phase leveled to code ionospheric observable and the raw code ionospheric observable. The observation error of the undifferenced ambiguity-fixed carrier phase ionospheric observable ranges from 0.05 to 0.11 total electron content unit (TECU) while that of the carrier phase leveled to code and the raw code ionospheric observable is from 0.65 to 1.65 and 3.14 to 7.48 TECU, respectively. (2) The time-varying receiver differential code bias (DCB), which presents clear day boundary discontinuity and intra-day variability pattern, contributes the most part of the observation error. This contribution is assessed by the short-term stability of the between-receiver DCB, which ranges from 0.06 to 0.17 TECU in a single day. (3) The remaining part of the observation errors presents a sidereal time cycle pattern, indicating the effects of the multipath. Further, the magnitude of the remaining part implies that the code multipath effects are much reduced. (4) The intra-day variation of the between-receiver DCB of the collocated stations suggests that estimating DCBs as a daily constant can have a mis-modeling error of at least several tenths of 1 TECU.Peer ReviewedPostprint (author's final draft

    Accelerating circular economy solutions to achieve the 2030 agenda for sustainable development goals

    Get PDF
    Circular economy seems a vital enabler for sustainable use of natural resources which is also important for achieving the 2030 agenda for sustainable development goals. Therefore, a special session addressing issues of "sustainable solutions and remarkable practices in circular economy focusing materials downstream" was held at the 16th International Conference on Waste Management and Technology, where researchers and attendees worldwide were convened to share their experiences and visions. Presentations focusing on many key points such as new strategies, innovative technologies, management methods, and practical cases were discussed during the session. Accordingly, this article compiled all these distinctive presentations and gave insights into the pathway of circular economy towards the sustainable development goals. We summarized that the transition to circular economy can keep the value of resources and products at a high level and minimize waste production; the focus of governmental policies and plans with the involvement of public-private-partnership on 3Rs (reduce, reuse, and recycle) helps to improve the use of natural resources and take a step ahead to approach or achieve the sustainability

    Orbits

    No full text
    This is the first book of the satellite era which describes orbit theory with analytical solutions of the second order with respect to all possible disturbances. Based on such theory, the algorithms of orbits determination are completely revolutionized

    Sciences of geodesy II: innovations and future developments

    No full text
    This series of reference books describes the sciences of different fields in and around geodesy. Each chapter, is written by experts in the respective fields and covers an individual field and describes the history, theory, the objective, the technology, and the development, the highlight of the research, the applications, the problems, as well as future directions. Contents of Volume II include: Geodetic LEO Satellite Missions, Satellite Altimetry, Airborne Lidar, GNSS Software Receiver, Geodetic Boundary Problem, GPS and INS, VLBI, Geodetic Reference Systems, Spectral Analysis, Earth Tide and Ocean Loading Tide, Remote Sensing, Photogrammetry, Occultation, Geopotential Determination, Geoid Determination, Local Gravity Field, Geopotential Determination, Magnet Field, Mobile Mapping, General Relativity, Wide-area Precise Positioning etc

    Sciences of geodesy I: advances and future directions

    No full text
    This series of reference books describes sciences of different elds in and around geodesy with independent chapters. Each chapter covers an individual eld and describes the history, theory, objective, technology, development, highlights of research and applications. In addition, problems as well as future directions are discussed. The subjects of this reference book include Absolute and Relative Gravimetry, Adaptively Robust Kalman Filters with Applications in Navigation, Airborne Gravity Field Determination, Analytic Orbit Theory, Deformation and Tectonics, Earth Rotation, Equivalence of GPS Algorithms and its Inference, Marine Geodesy, Satellite Laser Ranging, Superconducting Gravimetry and Synthetic Aperture Radar Interferometry. These are individual subjects in and around geodesy and are for the rst time combined in a unique book which may be used for teaching or for learning basic principles of many subjects related to geodesy. The material is suitable to provide a general overview of geodetic sciences for high-level geodetic researchers, educators as well as engineers and students. Some of the chapters are written to ll literature blanks of the related areas. Most chapters are written by well-known scientists throughout the world in the related areas. The chapters are ordered by their titles. Summaries of the individual chapters and introductions of their authors and co-authors are as follows. Chapter 1 "Absolute and Relative Gravimetry" provides an overview of the gravimetric methods to determine most accurately the gravity acceleration at given locations
    • …
    corecore