580 research outputs found

    Quantum Interactions in Topological R166 Kagome Magnet

    Full text link
    Kagome magnet has been found to be a fertile ground for the search of exotic quantum states in condensed matter. Arising from the unusual geometry, the quantum interactions in the kagome lattice give rise to various quantum states, including the Chern-gapped Dirac fermion, Weyl fermion, flat band and van Hove singularity. Here we review recent advances in the study of the R166 kagome magnet (RT6E6, R = rare earths; T = transition metals; and E = Sn, Ge, etc.) whose crystal structure highlights the transition-metal-based kagome lattice and rare-earth sublattice. Compared with other kagome magnets, the R166 family owns the particularly strong interplays between the d electrons on the kagome site and the localized f electrons on the rare-earth site. In the form of spin-orbital coupling, exchange interaction and many-body effect, the quantum interactions play an essential role in the Berry curvature field in both the reciprocal and real spaces of R166 family. We discuss the spectroscopic and transport visualization of the topological electrons hosted in the Mn kagome layer of RMn6Sn6 and the various topological effects due to the quantum interactions, including the Chern-gap opening, the exchange-biased effect, the topological Hall effect and the emergent inductance. We hope this work serves as a guide for future explorations of quantum magnets.Comment: Submitted versio

    Metal Injection Moulding of High Nb-Containing TiAl Alloy and Its Oxidation Behaviour at 900°C

    Get PDF
    High Nb-containing TiAl alloy with a nominal composition of Ti-45Al-8.5Nb-0.2W-0.2B-0.02Y (at %) was fabricated by metal injection moulding (MIM) technology with an improved wax-based binder. The critical powder loading and feedstock rheological behaviour were determined. The influence of sintering temperature on microstructures and mechanical properties of the sintered samples and their oxidation behaviour were also investigated. Results showed that a feedstock, with a powder loading of 68 vol % and good flowability, could be obtained by using the improved binder, and oxygen pick-up was lower than that of the sample prepared by using a traditional binder. The ultimate tensile strength (UTS) and plastic elongation of the sample sintered at 1480 °C for 2 h were 412 MPa and 0.33%, at room temperature, respectively. The 1480 °C-sintered sample consisted of γ/α2 lamellar microstructure with the average colony size of about 70 µm, and its porosity was about 4%. The sintered alloy showed better oxidation resistance than that of the cast alloy counterpart

    Global thyroid cancer incidence trend and age-period-cohort model analysis based on Global Burden of Disease Study from 1990 to 2019

    Get PDF
    BackgroundIn view of the rapid increase in the incidence of thyroid cancer (TC) and the spread of overdiagnosis around the world, the quantitative evaluation of the effect of age, period and birth cohort on the incidence of TC, and the analysis of the role of different factors in the incidence trend can provide scientific basis and data support for the national health departments to formulate reasonable prevention and treatment policies.MethodsThe study collated the global burden disease study data of TC incidence from 1990 to 2019, and used APC model to analyze the contribution of age, period and birth cohort to the incidence trend of TC.ResultsThere was an obvious unfavorable upward trend in terms of age and cohort effect all over the world. Since 2007, the growth rate of risk slowed down and the risk in female even decreased since 2012, which mainly contributed to the developed countries. In all SDI countries, 2002 is the dividing point of risk between male and female. In 2019, The global age-standardized incidence rate (ASIR) of TC in the 5 SDI countries all showed a significant upward trend, with the largest upward trend in the middle SDI countries.ConclusionThe trend of rapid increase in the incidence of TC has begun to slow down, but the global incidence of TC has obvious gender and regional/national heterogeneity. Policy makers should tailor specific local strategies to the risk factors of each country to further reduce the burden of TC

    Immune Responses in Mice Immunized with Mastitis Multiple Vaccines Using Different Adjuvants

    Get PDF
    Background: Bovine mastitis, a serious disease associated with both high incidence and significant economic losses, posing a major challenge to the global dairy industry. The development of vaccines for protection from new infections by mastitis pathogens is of considerable interest to the milk production industry. Vaccination is a common and easy strategy for the control of infectious diseases, and the adjuvants used in the formulation is a critical factor for vaccine efficacy improvement. The main objective of the present study was to evaluate three different adjuvants for their ability to enhance immune responses of mice that vaccinated with Bovine Mastitis Multiple Vaccine.Materials, Methods & Results: The thymus and spleen index, the phagocytic ability of macrophage and the serum antibody levels of mice were detected after vaccination, respectively. The results showed that the thymus index, spleen index, and the phagocytic ability of macrophage of mice in Aluminum group exhibited a significant higher level (P < 0.05) compared with those in the control groups. The difference of the serum antibody levels was significant (P < 0.05) between experimental groups and control group after vaccination. The serum antibody concentration of mice in FIA group was higher compared with other groups and had a longer duration. The antibody concentration of mice in France 206 oil group can not increase as fast as the antibody concentration of Aluminum group, but it can last a longer time at a high level. In conclusion, multiple vaccines mixed with three different adjuvants could enhance the immunity of mice and Freund’s incomplete adjuvant is the best choice for this vaccine.Discussion: Adjuvants play an important role in increasing the efficacy of a number of different vaccines. In this study, three kinds of adjuvants (Aluminum hydroxide, France 206 oil and FIA) were evaluated for their adjuvant effects for multiple vaccine of bovine mastitis in mice and aluminum hydroxide did best as the vaccine adjuvant from the results. Aluminum hydroxide is a universally accepted adjuvant for both human and veterinary vaccines. The goal of vaccination is to generate strong immune response providing protection against infection for a time. Different protective effects will usually obtained by different adjuvants even use same antigen. In this work, FIA, Alum and 206 oil were chosen as adjuvants for inactivated antigens of Streptococcus agalactiae, Streptococcus dysgalactiae and Staphylococcus aureus. The results showed that there was a significantly higher antibody levels in vaccinated mice compared with those in control group. In addition, the mice in France 206 oil and FIA group performed a higher antibody levels and stronger immunity than mice in Aluminum hydroxide groups. These findings suggest that Freund’s incomplete adjuvant (FIA) would be the best candidate as the adjuvant for mastitis multiple vaccines investigated in this study

    Intrinsic and tunable quantum anomalous Hall effect and magnetic topological phases in XYBi2Te5

    Full text link
    By first-principles calculations, we study the magnetic and topological properties of XYBi2Te5-family (X, Y = Mn, Ni, V, Eu) compounds. The strongly coupled double magnetic atom-layers can significantly enhance the magnetic ordering temperature while keeping the topologically nontrivial properties. Particularly, NiVBi2Te5 is found to be a magnetic Weyl semimetal in bulk and a Chern insulator in thin film with both the Curie temperature (~150 K) and full gap well above 77 K. Ni2Bi2Te5, MnNiBi2Te5, NiVBi2Te5 and NiEuBi2Te5 exhibits intrinsic dynamic axion state. Among them, MnNiBi2Te5 has a Neel temperature over 200 K and Ni2Bi2Te5 even demonstrates antiferromagnetic order above room temperature. These results indicate an approach to realize high temperature quantum anomalous Hall effect and other topological quantum effects for practical applications

    Evaluation of three high abundance protein depletion kits for umbilical cord serum proteomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High abundance protein depletion is a major challenge in the study of serum/plasma proteomics. Prior to this study, most commercially available kits for depletion of highly abundant proteins had only been tested and evaluated in adult serum/plasma, while the depletion efficiency on umbilical cord serum/plasma had not been clarified. Structural differences between some adult and fetal proteins (such as albumin) make it likely that depletion approaches for adult and umbilical cord serum/plasma will be variable. Therefore, the primary purposes of the present study are to investigate the efficiencies of several commonly-used commercial kits during high abundance protein depletion from umbilical cord serum and to determine which kit yields the most effective and reproducible results for further proteomics research on umbilical cord serum.</p> <p>Results</p> <p>The immunoaffinity based kits (PROTIA-Sigma and 5185-Agilent) displayed higher depletion efficiency than the immobilized dye based kit (PROTBA-Sigma) in umbilical cord serum samples. Both the PROTIA-Sigma and 5185-Agilent kit maintained high depletion efficiency when used three consecutive times. Depletion by the PROTIA-Sigma Kit improved 2DE gel quality by reducing smeared bands produced by the presence of high abundance proteins and increasing the intensity of other protein spots. During image analysis using the identical detection parameters, 411 ± 18 spots were detected in crude serum gels, while 757 ± 43 spots were detected in depleted serum gels. Eight spots unique to depleted serum gels were identified by MALDI- TOF/TOF MS, seven of which were low abundance proteins.</p> <p>Conclusions</p> <p>The immunoaffinity based kits exceeded the immobilized dye based kit in high abundance protein depletion of umbilical cord serum samples and dramatically improved 2DE gel quality for detection of trace biomarkers.</p

    Modified Newton's gravity in Finsler Space as a possible alternative to dark matter hypothesis

    Full text link
    A modified Newton's gravity is obtained as the weak field approximation of the Einstein's equation in Finsler space. It is found that a specified Finsler structure makes the modified Newton's gravity equivalent to the modified Newtonian dynamics (MOND). In the framework of Finsler geometry, the flat rotation curves of spiral galaxies can be deduced naturally without invoking dark matter.Comment: some changes have been added, to be published in Phy. Lett.

    Main species and chemical pathways in cold atmospheric-pressure Ar+H2O plasmas

    Get PDF
    Cold atmospheric-pressure plasmas in Ar+H2O gas mixtures are a promising alternative to He+H2O plasmas as both can produce reactive oxygen species of relevance for many applications and argon is cheaper than helium. Although He+H2O plasmas have been subject of multiple experimental and computational studies, Ar+H2O plasmas have received less attention. In this work we investigate the composition and chemical pathways in Ar+H2O plasmas by means of a global model that incorporates 57 species and 1228 chemical reactions. Water vapor concentrations from 1 ppm to saturation (32000 ppm) are considered in the study and abrupt transitions in power dissipation channels, species densities and chemical pathways are found when the water concentration increases from 100 to 1000 ppm. In this region the plasma transitions from an electropositive discharge in which most power is coupled to electrons into an electronegative one in which most power is coupled to ions. While increasing electronegativity is also observed in He+H2O plasmas, in Ar+H2O plasmas the transition is more abrupt because Penning processes do not contribute to gas ionization and the changes in the electron energy distribution function and mean electron energy caused by the increasing water concentration result in electron-neutral excitation and ionization rates changing by many orders of magnitude in a relatively small range of water concentrations. Insights into the main chemical species and pathways governing the production and loss of electrons, O, OH, OH(A) and H2O2 are provided as part of the study
    corecore