160 research outputs found

    Evidence of the side jump mechanism in the anomalous Hall effect in paramagnets

    Full text link
    Persistent confusion has existed between the intrinsic (Berry curvature) and the side jump mechanisms of anomalous Hall effect (AHE) in ferromagnets. We provide unambiguous identification of the side jump mechanism, in addition to the skew scattering contribution in epitaxial paramagnetic Ni34_{34}Cu66_{66} thin films, in which the intrinsic contribution is by definition excluded. Furthermore, the temperature dependence of the AHE further reveals that the side jump mechanism is dominated by the elastic scattering

    Thermoelectric Precession in Turbulent Magnetoconvection

    Get PDF
    We present laboratory measurements of the interaction between thermoelectric currents and turbulent magnetoconvection. In a cylindrical volume of liquid gallium heated from below and cooled from above and subject to a vertical magnetic field, it is found that the large scale circulation (LSC) can undergo a slow axial precession. Our experiments demonstrate that this LSC precession occurs only when electrically conducting boundary conditions are employed, and that the precession direction reverses when the axial magnetic field direction is flipped. A thermoelectric magnetoconvection (TEMC) model is developed that successfully predicts the zeroth-order magnetoprecession dynamics. Our TEMC magnetoprecession model hinges on thermoelectric current loops at the top and bottom boundaries, which create Lorentz forces that generate horizontal torques on the overturning large-scale circulatory flow. The thermoelectric torques in our model act to drive a precessional motion of the LSC. This model yields precession frequency predictions that are in good agreement with the experimental observations. We postulate that thermoelectric effects in convective flows, long argued to be relevant in liquid metal heat transfer and mixing processes, may also have applications in planetary interior magnetohydrodynamics

    Automated 3D Segmentation of Kidneys and Tumors in MICCAI KiTS 2023 Challenge

    Full text link
    Kidney and Kidney Tumor Segmentation Challenge (KiTS) 2023 offers a platform for researchers to compare their solutions to segmentation from 3D CT. In this work, we describe our submission to the challenge using automated segmentation of Auto3DSeg available in MONAI. Our solution achieves the average dice of 0.835 and surface dice of 0.723, which ranks first and wins the KiTS 2023 challenge.Comment: MICCAI 2023, KITS 2023 challenge 1st plac

    Aorta Segmentation from 3D CT in MICCAI SEG.A. 2023 Challenge

    Full text link
    Aorta provides the main blood supply of the body. Screening of aorta with imaging helps for early aortic disease detection and monitoring. In this work, we describe our solution to the Segmentation of the Aorta (SEG.A.231) from 3D CT challenge. We use automated segmentation method Auto3DSeg available in MONAI. Our solution achieves an average Dice score of 0.920 and 95th percentile of the Hausdorff Distance (HD95) of 6.013, which ranks first and wins the SEG.A. 2023 challenge.Comment: MICCAI 2023, SEG.A. 2023 challenge 1st plac
    • …
    corecore