4 research outputs found

    Patterns of CO2 emissions in 18 central Chinese cities from 2000 to 2014

    Get PDF
    With the Rise of Central China Plan, the central region has had a great opportunity to develop its economy and improve its original industrial structure. However, this region is also under pressure to protect its environment, keep its development sustainable and reduce carbon emissions. Therefore, accurately estimating the temporal and spatial dynamics of CO2 emissions and analysing the factors influencing these emissions are especially important. This paper estimates the CO2 emissions derived from the fossil fuel combustion and industrial processes of 18 central cities in China between 2000 and 2014. The results indicate that these 18 cities, which contain an average of 6.57% of the population and 7.91% of the GDP, contribute 13% of China's total CO2 emissions. The highest cumulative CO2 emissions from 2000 to 2014 were from Taiyuan and Wuhan, with values of 2268.57 and 1847.59 million tons, accounting for 19.21% and 15.64% of the total among these cities, respectively. Therefore, the CO2 emissions in the Taiyuan urban agglomeration and Wuhan urban agglomeration represented 28.53% and 20.14% of the total CO2 emissions from the 18 cities, respectively. The three cities in the Zhongyuan urban agglomeration also accounted for a second highest proportion of emissions at 23.51%. With the proposal and implementation of the Rise of Central China Plan in 2004, the annual average growth rate of total CO2 emissions gradually decreased and was lower in the periods from 2005 to 2010 (5.44%) and 2010 to 2014 (5.61%) compared with the rate prior to 2005 (12.23%). When the 47 socioeconomic sectors were classified into 12 categories, “power generation” contributed the most to the total cumulative CO2 emissions at 36.51%, followed by the “non-metal and metal industry”, “petroleum and chemical industry”, and “mining” sectors, representing emissions proportions of 29.81%, 14.79%, and 9.62%, respectively. Coal remains the primary fuel in central China, accounting for an average of 80.59% of the total CO2 emissions. Industrial processes also played a critical role in determining the CO2 emissions, with an average value of 7.3%. The average CO2 emissions per capita across the 18 cities increased from 6.14 metric tons in 2000 to 15.87 metric tons in 2014, corresponding to a 158.69% expansion. However, the average CO2 emission intensity decreased from 0.8 metric tons/1000 Yuan in 2000 to 0.52 metric tons/1000 Yuan in 2014 with some fluctuations. The changes in and industry contributions of carbon emissions were city specific, and the effects of population and economic development on CO2 emissions varied. Therefore, long-term climate change mitigation strategies should be adjusted for each city

    New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors

    Get PDF
    This study employs “apparent energy consumption” approach and updated emissions factors to re-calculate Chinese provincial CO2 emissions during 2000–2012 to reduce the uncertainty in Chinese CO2 emission estimates for the first time. The study presents the changing emission-socioeconomic features of each provinces as well. The results indicate that Chinese provincial aggregated CO2 emissions calculated by the apparent energy consumption and updated emissions factors are coincident with the national emissions estimated by the same approach, which are 12.69% smaller than the one calculated by the traditional approach and IPCC default emission factors. The provincial aggregated CO2 emissions increased from 3160 million tonnes in 2000 to 8583 million tonnes in 2012. During the period, Shandong province contributed most to national emissions accumulatively (with an average percentage of 10.35%), followed by Liaoning (6.69%), Hebei (6.69%) and Shanxi provinces (6.25%). Most of the CO2 emissions were from raw coal, which is primarily burned in the thermal power sector. The analyses of per capita emissions and emission intensity in 2012 indicates that provinces located in the northwest and north had higher per capita CO2 emissions and emission intensities than the central and southeast coastal regions. Understanding the emissions and emission-socioeconomic characteristics of different provinces is critical for developing mitigation strategies

    New provincial CO_2 emission inventories in China based on apparent energy consumption data and updated emission factors

    No full text
    This study employs “apparent energy consumption” approach and updated emissions factors to re-calculate Chinese provincial CO_2 emissions during 2000–2012 to reduce the uncertainty in Chinese CO_2 emission estimates for the first time. The study presents the changing emission-socioeconomic features of each provinces as well. The results indicate that Chinese provincial aggregated CO_2 emissions calculated by the apparent energy consumption and updated emissions factors are coincident with the national emissions estimated by the same approach, which are 12.69% smaller than the one calculated by the traditional approach and IPCC default emission factors. The provincial aggregated CO_2 emissions increased from 3160 million tonnes in 2000 to 8583 million tonnes in 2012. During the period, Shandong province contributed most to national emissions accumulatively (with an average percentage of 10.35%), followed by Liaoning (6.69%), Hebei (6.69%) and Shanxi provinces (6.25%). Most of the CO_2 emissions were from raw coal, which is primarily burned in the thermal power sector. The analyses of per capita emissions and emission intensity in 2012 indicates that provinces located in the northwest and north had higher per capita CO_2 emissions and emission intensities than the central and southeast coastal regions. Understanding the emissions and emission-socioeconomic characteristics of different provinces is critical for developing mitigation strategies

    New provincial CO_2 emission inventories in China based on apparent energy consumption data and updated emission factors

    No full text
    This study employs “apparent energy consumption” approach and updated emissions factors to re-calculate Chinese provincial CO_2 emissions during 2000–2012 to reduce the uncertainty in Chinese CO_2 emission estimates for the first time. The study presents the changing emission-socioeconomic features of each provinces as well. The results indicate that Chinese provincial aggregated CO_2 emissions calculated by the apparent energy consumption and updated emissions factors are coincident with the national emissions estimated by the same approach, which are 12.69% smaller than the one calculated by the traditional approach and IPCC default emission factors. The provincial aggregated CO_2 emissions increased from 3160 million tonnes in 2000 to 8583 million tonnes in 2012. During the period, Shandong province contributed most to national emissions accumulatively (with an average percentage of 10.35%), followed by Liaoning (6.69%), Hebei (6.69%) and Shanxi provinces (6.25%). Most of the CO_2 emissions were from raw coal, which is primarily burned in the thermal power sector. The analyses of per capita emissions and emission intensity in 2012 indicates that provinces located in the northwest and north had higher per capita CO_2 emissions and emission intensities than the central and southeast coastal regions. Understanding the emissions and emission-socioeconomic characteristics of different provinces is critical for developing mitigation strategies
    corecore