790 research outputs found

    The decrotonylase FoSir5 facilitates mitochondrial metabolic state switching in conidial germination of Fusarium oxysporum.

    Get PDF
    Fusarium oxysporum is one of the most important pathogenic fungi with a broad range of plant and animal hosts. The first key step of its infection cycle is conidial germination, but there is limited information available on the molecular events supporting this process. We show here that germination is accompanied by a sharp decrease in expression of FoSir5, an ortholog of the human lysine deacetylase SIRT5. We observe that FoSir5 decrotonylates a subunit of the fungal pyruvate dehydrogenase complex (FoDLAT) at K148, resulting in inhibition of the activity of the complex in mitochondria. Moreover, FoSir5 decrotonylates histone H3K18, leading to a downregulation of transcripts encoding enzymes of aerobic respiration pathways. Thus, the activity of FoSir5 coordinates regulation in different organelles to steer metabolic flux through respiration. As ATP content is positively related to fungal germination, we propose that FoSir5 negatively modulates conidial germination in F. oxysporum through its metabolic impact. These findings provide insights into the multifaceted roles of decrotonylation, catalyzed by FoSir5, that support conidial germination in F. oxysporum

    Generative Model for Models: Rapid DNN Customization for Diverse Tasks and Resource Constraints

    Full text link
    Unlike cloud-based deep learning models that are often large and uniform, edge-deployed models usually demand customization for domain-specific tasks and resource-limited environments. Such customization processes can be costly and time-consuming due to the diversity of edge scenarios and the training load for each scenario. Although various approaches have been proposed for rapid resource-oriented customization and task-oriented customization respectively, achieving both of them at the same time is challenging. Drawing inspiration from the generative AI and the modular composability of neural networks, we introduce NN-Factory, an one-for-all framework to generate customized lightweight models for diverse edge scenarios. The key idea is to use a generative model to directly produce the customized models, instead of training them. The main components of NN-Factory include a modular supernet with pretrained modules that can be conditionally activated to accomplish different tasks and a generative module assembler that manipulate the modules according to task and sparsity requirements. Given an edge scenario, NN-Factory can efficiently customize a compact model specialized in the edge task while satisfying the edge resource constraints by searching for the optimal strategy to assemble the modules. Based on experiments on image classification and object detection tasks with different edge devices, NN-Factory is able to generate high-quality task- and resource-specific models within few seconds, faster than conventional model customization approaches by orders of magnitude

    A novel botybirnavirus with a unique satellite dsRNA causes latent infection in Didymella theifolia isolated from tea plants

    Get PDF
    © 2023 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/The unique, recently discovered fungus Didymella theifolia specifically infects local varieties of tea plant Camellia sinensis in China, and therefore, the characterization of its mycoviruses is important. Three double-stranded (ds) RNAs (1, 2, and 3, with 6,338, 5,910, and 727 bp in size, respectively) were identified in the avirulent D. theifolia strain CJP4-1, which exhibits normal growth and morphology. Characterization of these double-stranded RNAs (dsRNAs) revealed that the two largest elements are the genomic components of a novel botybirnavirus, tentatively named Didymella theifolia botybirnavirus 1 (DtBRV1). Conversely, dsRNA3 shares no detectable similarity with sequences deposited in public databases but has high similarity with the 5′-terminal regions of dsRNAs 1 and 2 and contains a duplicated region encoding a putative small peptide. All three dsRNAs are encapsidated in isometric virions ca. 40 nm in diameter, supporting the notion that dsRNA3 is a DtBRV1 satellite. SDS-polyacrylamide gel electrophoresis in combination with peptide mass fingerprint analysis revealed that the DtBRV1 capsid protein consists of polypeptides encoded by the 5′-terminal regions of both genomic components dsRNA1 and dsRNA2. Vertical transmission of DtBRV1 through conidia is efficient, while its horizontal transmission from CJP4-1 to other strains was not detected. DtBRV1, with or without dsRNA3, has no obvious effects on fungal growth and virulence, as illustrated following transfection of the virulent D. theifolia strain JYC1-6. In summary, DtBRV1 exhibits unique molecular traits and contributes to our understanding of mycovirus diversity.Peer reviewe

    On the use of an explicit chemical mechanism to dissect peroxy acetyl nitrate formation.

    Get PDF
    Peroxy acetyl nitrate (PAN) is a key component of photochemical smog and plays an important role in atmospheric chemistry. Though it has been known that PAN is produced via reactions of nitrogen oxides (NOx) with some volatile organic compounds (VOCs), it is difficult to quantify the contributions of individual precursor species. Here we use an explicit photochemical model--Master Chemical Mechanism (MCM) model--to dissect PAN formation and identify principal precursors, by analyzing measurements made in Beijing in summer 2008. PAN production was sensitive to both NOx and VOCs. Isoprene was the predominant VOC precursor at suburb with biogenic impact, whilst anthropogenic hydrocarbons dominated at downtown. PAN production was attributable to a relatively small class of compounds including NOx, xylenes, trimethylbenzenes, trans/cis-2-butenes, toluene, and propene. MCM can advance understanding of PAN photochemistry to a species level, and provide more relevant recommendations for mitigating photochemical pollution in large cities

    Isobavachalcone Sensitizes Cells to E2-Induced Paclitaxel Resistance by Down-Regulating CD44 Expression in ER+ Breast Cancer Cells

    Get PDF
    Oestrogen receptor (ER) is expressed in approximately 60%‐70% of human breast cancer. Clinical trials and retrospective analyses have shown that ER‐positive (ER+) tumours are more tolerant to chemotherapeutic drug resistance than ER‐negative (ER−) tumours. In addition, isobavachalcone (IBC) is known as a kind of phytoestrogen with antitumour effect. However, the underlying mechanism of IBC in ER+ breast cancer needs to be elucidated further. Our in vitro experiments showed that IBC could attenuate 17β‐estradiol (E2)‐induced paclitaxel resistance and that E2 could stimulate CD44 expression in ER+ breast cancer cells but not in ER− cells. Meanwhile, E2 could promote ERα expression to render ER+ breast cancer cells resistant to paclitaxel. Furthermore, we established paclitaxel‐resistant breast cancer cell lines and determined the function of ERα in the enhancement of paclitaxel resistance via the regulation of CD44 transcription. IBC down‐regulated ERα and CD44 expression and thus inhibited tumour growth in paclitaxel‐resistant xenograft models. Overall, our data demonstrated for the first time that IBC could decrease CD44 expression level via the ERα pathway and make ER+ breast cancer cells sensitive to paclitaxel treatment

    An Experimental Study on the Establishment of Pulmonary Hypertension Model in Rats induced by Monocrotaline

    Get PDF
    Pulmonary hypertension is called PH for short. It is caused by the pulmonary artery vascular disease leading to pulmonary vascular resistance, and the increase right lung compartment load, which resulting in weakening or even collapse of the right ventricular function. The establishment of rat PH model under the action of monocrotaline is a repeatable, simple and accessible operation technique, which has been widely used in the treatment of pulmonary hypertension. This paper discusses the principle and properties of the PH model on rats under the monocrotaline action
    corecore