18 research outputs found

    Deciphering Charging Status, Absolute Quantum Efficiency, and Absorption Cross Section of MultiCarrier States in Single Colloidal Quantum Dot

    Full text link
    Upon photo- or electrical-excitation, colloidal quantum dots (QDs) are often found in multi-carrier states due to multi-photon absorption and photo-charging of the QDs. While many of these multi-carrier states are observed in single-dot spectroscopy, their properties are not well studied due to random charging/discharging, emission intensity intermittency, and uncontrolled surface defects of single QD. Here we report in-situ deciphering the charging status, and precisely assessing the absorption cross section, and determining the absolute emission quantum yield of mono-exciton and biexciton states for neutral, positively-charged, and negatively-charged single core/shell CdSe/CdS QD. We uncover very different photon statistics of the three charge states in single QD and unambiguously identify their charge sign together with the information of their photoluminescence decay dynamics. We then show their distinct photoluminescence saturation behaviors and evaluated the absolute values of absorption cross sections and quantum efficiencies of monoexcitons and biexcitons. We demonstrate that addition of an extra hole or electron in a QD changes not only its emission properties but also varies its absorption cross section

    Unraveling the “U-Shaped” Dependence of Surface Flashover Performance on the Surface Trap Level

    No full text
    The effects of surface traps on surface flashover remain controversial. To clarify the relation between surface flashover and surface trap level, in this work, the surface trap level of epoxy composites was modified by nanoparticles incorporation, electron beam irradiation, and ozone treatment. Surface trap characteristics were analyzed by surface potential decay. Surface flashover voltages were measured in a vacuum for dc voltage and in SF6 for ac voltage. The “U-shaped” curve is founded to describe the relation between surface flashover voltage and surface deep trap level, surface flashover voltage first decreases and then increases with surface deep trap level. Enhancement of surface flashover voltage is attributed to reduced surface charge density, which was calculated by a double-trap flashover model. The simulation results indicate that the surface charge density on left side of “U-shaped” curve is controlled by surface shallow traps, whereas that on the right side is determined by surface deep traps. The effects of surface shallow and deep traps on surface charge accumulation and dissipation are used to demonstrate the reduced surface charges and improved surface flashover voltage for the “U-shaped” curve. The proposed “U-shaped” curve offers a promising way to improve surface flashover performance for high-voltage applications by tailoring surface trap characteristics with surface modifications

    Truncated Metallo-Dielectric Omnidirectional Reflector: Collecting Single Photons in the Fundamental Gaussian Mode with 95% Efficiency

    No full text
    We propose a novel antenna structure that funnelssingle photons from a single emitter with unprecedented efficiencyinto a low-divergence fundamental Gaussian mode. Our devicerelies on the concept of creating an omnidirectional photonicbandgap to inhibit unwanted large-angle emission and to enhancesmall-angle defect-guided-mode emission. The new photoncollection strategy is intuitively illustrated, rigorously verified,and optimized by implementing an efficient, body-of-revolution,finite-difference, time-domain method for in-plane dipole emitters.We investigate a few antenna designs to cover various boundaryconditions posed by fabrication processes or material restrictions and theoretically demonstrate that collection efficiencies into thefundamental Gaussian mode exceeding 95% are achievable. Our antennas are broadband, insensitive to fabrication imperfections andcompatible with a variety of solid-state emitters such as organic molecules, quantum dots, and defect centers in diamond.Unidirectional and low-divergence Gaussian-mode emission from a single emitter may enable the realization of a variety of photonicquantum computer architectures as well as highly efficient light−matter interfaces

    Impact of PpSpi1, a glycosylphosphatidylinositol-anchored cell wall glycoprotein, on cell wall defects of N-glycosylation-engineered Pichia pastoris

    No full text
    ABSTRACT In order to produce therapeutic glycoproteins modified with human-like N-glycan structures, much progress has been achieved toward the humanization of N-glycosylation pathways in yeasts. In this study, a Pichia pastoris mutant Glyco4, which has a humanized N-glycosylation pathway and could successfully generate the human-like N-glycans, was carefully characterized. Glyco4 displays a significant growth delay and cell wall defects. Comparative transcriptomics reveals that manipulating the N-glycosylation pathway could notably affect the expression pattern of numerous biological pathways in Glyco4. Among the differentially expressed genes, the down-regulation of PpSPI1 was proven to be the main cause of the cell wall defects in Glyco4. Deletion of PpSPI1 in P. pastoris GS115 strain presented growth delay and weaker resistance to cell wall/membrane perturbing agents. PpSpi1 was shown to be a glycosylphosphatidylinositol-anchored cell wall glycoprotein and involved in the formation of the mannoprotein layer on the outer surface of cell wall. Overexpressing PpSPI1 in Glyco4 could partially recover the cell wall defects and also improve its resistance to cell wall perturbing agents and osmotic stress. Thus, overexpression of PpSpi1 is a useful strategy to facilitate P. pastoris industrial applications in the manufacture of human glycoproteins. IMPORTANCE Engineering of biological pathways in various microorganisms is a promising direction for biotechnology. Since the existing microbial cells have evolved over a long period of time, any artificial engineering may cause some unexpected and harmful effects on them. Systematically studying and evaluating these engineered strains are very important and necessary. In order to produce therapeutic proteins with human-like N-glycan structures, much progress has been achieved toward the humanization of N-glycosylation pathways in yeasts. The properties of a P. pastoris strain with humanized N-glycosylation machinery were carefully evaluated in this study. Our work has identified a key glycoprotein (PpSpi1) responsible for the poor growth and morphological defects of this glycoengineered strain. Overexpression of PpSpi1 could significantly rescue the growth defect of the glycoengineered P. pastoris and facilitate its future industrial applications

    Perioperative risk factors for postoperative pneumonia after major oral cancer surgery: A retrospective analysis of 331 cases

    No full text
    <div><p>Objective</p><p>Postoperative pneumonia (POP) is common and results in prolonged hospital stays, higher costs, increased morbidity and mortality. However, data on the incidence and risk factors of POP after oral and maxillofacial surgery are rare. This study aims to identify perioperative risk factors for POP after major oral cancer (OC) surgery.</p><p>Methods</p><p>Perioperative data and patient records of 331 consecutive subjects were analyzed in the period of April 2014 to March 2016. We individually traced each OC patient for a period to discharge from the hospital or 45 days after surgery, whichever occur later.</p><p>Results</p><p>The incidence of POP after major OC surgery with free flap construction or major OC surgery was 11.6% or 4.5%, respectively. Patient-related risk factors for POP were male sex, T stage, N stage, clinical stage and preoperative serum albumin level. Among the investigated procedure-related variables, incision grade, mandibulectomy, free flap reconstruction, tracheotomy, intraoperative blood loss, and the length of the operation were shown to be associated with the development of POP. Postoperative hospital stay was also significantly related to increased incidence of POP. Using a multivariable logistic regression model, we identified male sex, preoperative serum albumin level, operation time and postoperative hospital stay as independent risk factors for POP.</p><p>Conclusion</p><p>Several perioperative risk factors can be identified that are associated with POP. At-risk oral cancer patients should be subjected to intensified postoperative pulmonary care.</p></div
    corecore