804 research outputs found

    The role of credit in international business cycles

    Get PDF
    The recent financial crisis raises important issues about the role of credit in international business cycles and the transmission of financial shocks across country borders. This paper investigates the international spillover of US credit shocks and the importance of credit in explaining business cycle fluctuations using a global vector autoregressive (GVAR) model with credit, estimated over the period 1979Q2 to 2006Q4 for 26 major advanced and emerging economies. Results from the country-specific models reveal the importance of bank credit in explaining output growth, changes in inflation and long term interest rates in countries with developed banking sector. The generalized impulse response function (GIRF) for a one standard error negative shock to US real credit provides strong evidence of the spillover of US credit shock to the UK, the Euro area, Japan and other industrialized economies

    Study on the Activity of PI3K/AKT, Death Receptor and 14-3-3 Mediated Signaling Pathways Regulating Hepatocyte Apoptosis during Rat Liver Regeneration

    Get PDF
    Studies have shown that apoptosis is closely related to the rat liver regeneration. To understand the mechanism of hepatocyte apoptosis during rat liver regeneration at the gene transcription level, the Rat Genome 230 2.0 Array was used to determine the expression changes of genes. Then the genes associated with cell apoptosis were searched by GO and NCBI databases, and cell apoptosis signaling pathways were searched by the database of QIAGEN and KEGG. Their signaling activities were calculated by spectral function E(t). The mechanism of hepatocyte apoptosis during rat liver regeneration was analyzed by Ingenuity Pathway Analysis 9.0 (IPA). The results showed that among the 27 signaling pathways regulating cell apoptosis, the E(t) values of Apoptosis signaling pathway and 14-3-3 mediated signaling pathway were significantly increased in the progression phase (6-72h after PH) of rat liver regeneration, and the E(t) values of hepatocyte apoptosis mediated by mitochondria rout were also significantly increased. The E(t) values of death receptor signaling pathway and PI3K/AKT branch of 14-3-3 mediated signaling pathway were significantly increased in the progression phase and the terminal phase (72-168h after PH) of rat liver regeneration, and the E(t) values of hepatocyte apoptosis mediated by cytomembrane route and nucleus route were also significantly increased. Conclusion: PI3K/AKT, death receptor and mitochondria branch played a key role in promoting cell apoptosis during rat liver regeneration

    Enhancement of process capabilities in electrically-assisted double sided incremental forming

    Get PDF
    © 2015 Elsevier Ltd. Electrically-assisted incremental sheet forming (E-ISF) is an effective method to improve formability by introducing the electric current in ISF process. This method is particularly useful for production of lightweight 'hard-to-form' materials such as magnesium and titanium alloys. However, the use of electricity and heat may also lead to side effects to formed components, such as unacceptable surface finish. In this work, an improved E-DSIF process has been developed by combining the electrically-assisted forming technology, the double sided incremental forming (DSIF) and a newly designed slave tool force control device to ensure stable tool-sheet contact. Different types of forming tools and toolpath strategies are explored to improve surface finish and geometrical accuracy by using a customized DSIF machine. AZ31B magnesium alloy sheets are formed into a truncated cone shape to verify the proposed E-DSIF process. In the investigation, the causes of rough surface finish are investigated in detail, and the surface finish is refined by improving the contact condition at tool-sheet interface. In addition, a hybrid toolpath strategy is proposed to further enhance the geometrical accuracy. The results demonstrate that the two challenging issues, surface finish and geometrical accuracy, could be improved by using the enhanced technologies of E-DSIF

    Operations and maintenance for multipurpose offshore platforms using statistical weather window analysis

    Get PDF
    With increasing offshore-related commerce, the choice of appropriate operations and maintenance activities must take into consideration safety, costs and performance targets. Stochastic weather conditions at each site of interest presents uncertain situations. We present an optimized decision making procedure that seeks to maximize monetary benefits while minimizing safety risks. Our proposed approach outlines and illustrates application of such a policy by incorporating traditional weather window analysis using a Markov Decision Process approach. In particular, the approach is applied in case study involving the operation of a multipurpose platform at an offshore Scotland site

    Study on the Activity of PI3K/AKT, Death Receptor and 14-3-3 Mediated Signaling Pathways Regulating Hepatocyte Apoptosis during Rat Liver Regeneration

    Get PDF
    Studies have shown that apoptosis is closely related to the rat liver regeneration. To understand the mechanism of hepatocyte apoptosis during rat liver regeneration at the gene transcription level, the Rat Genome 230 2.0 Array was used to determine the expression changes of genes. Then the genes associated with cell apoptosis were searched by GO and NCBI databases, and cell apoptosis signaling pathways were searched by the database of QIAGEN and KEGG. Their signaling activities were calculated by spectral function E(t). The mechanism of hepatocyte apoptosis during rat liver regeneration was analyzed by Ingenuity Pathway Analysis 9.0 (IPA). The results showed that among the 27 signaling pathways regulating cell apoptosis, the E(t) values of Apoptosis signaling pathway and 14-3-3 mediated signaling pathway were significantly increased in the progression phase (6-72h after PH) of rat liver regeneration, and the E(t) values of hepatocyte apoptosis mediated by mitochondria rout were also significantly increased. The E(t) values of death receptor signaling pathway and PI3K/AKT branch of 14-3-3 mediated signaling pathway were significantly increased in the progression phase and the terminal phase (72-168h after PH) of rat liver regeneration, and the E(t) values of hepatocyte apoptosis mediated by cytomembrane route and nucleus route were also significantly increased. Conclusion: PI3K/AKT, death receptor and mitochondria branch played a key role in promoting cell apoptosis during rat liver regeneration

    Non-Markovian dynamics for an open two-level system without rotating wave approximation: Indivisibility versus backflow of information

    Full text link
    By use of the two measures presented recently, the indivisibility and the backflow of information, we study the non-Markovianity of the dynamics for a two-level system interacting with a zero-temperature structured environment without using rotating wave approximation (RWA). In the limit of weak coupling between the system and the reservoir, and by expanding the time-convolutionless (TCL) generator to the forth order with respect to the coupling strength, the time-local non-Markovian master equation for the reduced state of the system is derived. Under the secular approximation, the exact analytic solution is obtained and the sufficient and necessary conditions for the indivisibility and the backflow of information for the system dynamics are presented. In the more general case, we investigate numerically the properties of the two measures for the case of Lorentzian reservoir. Our results show the importance of the counter-rotating terms to the short-time-scale non-Markovian behavior of the system dynamics, further expose the relations between the two measures and their rationality as non-Markovian measures. Finally, the complete positivity of the dynamics of the considered system is discussed

    Scaling violations: Connections between elastic and inelastic hadron scattering in a geometrical approach

    Get PDF
    Starting from a short range expansion of the inelastic overlap function, capable of describing quite well the elastic pp and pˉp\bar{p}p scattering data, we obtain extensions to the inelastic channel, through unitarity and an impact parameter approach. Based on geometrical arguments we infer some characteristics of the elementary hadronic process and this allows an excellent description of the inclusive multiplicity distributions in pppp and pˉp\bar{p}p collisions. With this approach we quantitatively correlate the violations of both geometrical and KNO scaling in an analytical way. The physical picture from both channels is that the geometrical evolution of the hadronic constituents is principally reponsible for the energy dependence of the physical quantities rather than the dynamical (elementary) interaction itself.Comment: 16 pages, aps-revtex, 11 figure

    Hybridisation-based target enrichment of phenology genes to dissect the genetic basis of yield and adaptation in barley

    Get PDF
    Barley (Hordeum vulgare L.) is a major cereal grain widely used for livestock feed, brewing malts and human food. Grain yield is the most important breeding target for genetic improvement and largely depends on optimal timing of flowering. Little is known about the allelic diversity of genes that underlie flowering time in domesticated barley, the genetic changes that have occurred during breeding, and their impact on yield and adaptation. Here we report a comprehensive genomic assessment of a worldwide collection of 895 barley accessions based on the targeted resequencing of phenology genes. A versatile target‐capture method was used to detect genome‐wide polymorphisms in a panel of 174 flowering time‐related genes, chosen based on prior knowledge from barley, rice, and Arabidopsis thaliana. Association studies identified novel polymorphisms that accounted for observed phenotypic variation in phenology and grain yield, and explained improvements in adaptation as a result of historical breeding of Australian barley cultivars. We found that 50% of genetic variants associated with grain yield, and 67% of the plant height variation was also associated with phenology. The precise identification of favourable alleles provides a genomic basis to improve barley yield traits and to enhance adaptation for specific production areas

    Deformation‐resilient embroidered near field communication antenna and energy harvesters for wearable applications

    Get PDF
    E‐Textiles have gained increasing momentum in wearable electronics recently. Conductive‐yarn‐based embroidered devices, with the advantages of being soft, deformable, breathable, and protective for the skin, play an important role in replacing many metallic counterparts. However, embroidered devices face many new challenges in their design methodology and fabrication processes, such as high resistivity and low Q value of the conductive yarns, as well as deformation of device geometries during wearing. Herein, a strain‐free, deformation‐resilient embroidery process for near field communication (NFC) coil antennas is introduced. Coil geometry can endure extreme deformation by stretching with up to 50% elongation, bending with curvature as small as 16 mm in radius, and can still maintain a relatively small variation in its inductance, resonant frequency, Q value, as well as its energy‐harvesting capabilities. The embroidered coil antenna is used in an NFC‐based battery‐free body sensor system. Experiments demonstrate that the system can maintain a stable performance (voltage supply, temperature sensing, and reading range) under various deformation conditions

    Gravitational Lensing at Millimeter Wavelengths

    Full text link
    With today's millimeter and submillimeter instruments observers use gravitational lensing mostly as a tool to boost the sensitivity when observing distant objects. This is evident through the dominance of gravitationally lensed objects among those detected in CO rotational lines at z>1. It is also evident in the use of lensing magnification by galaxy clusters in order to reach faint submm/mm continuum sources. There are, however, a few cases where millimeter lines have been directly involved in understanding lensing configurations. Future mm/submm instruments, such as the ALMA interferometer, will have both the sensitivity and the angular resolution to allow detailed observations of gravitational lenses. The almost constant sensitivity to dust emission over the redshift range z=1-10 means that the likelihood for strong lensing of dust continuum sources is much higher than for optically selected sources. A large number of new strong lenses are therefore likely to be discovered with ALMA, allowing a direct assessment of cosmological parameters through lens statistics. Combined with an angular resolution <0.1", ALMA will also be efficient for probing the gravitational potential of galaxy clusters, where we will be able to study both the sources and the lenses themselves, free of obscuration and extinction corrections, derive rotation curves for the lenses, their orientation and, thus, greatly constrain lens models.Comment: 69 pages, Review on quasar lensing. Part of a LNP Topical Volume on "Dark matter and gravitational lensing", eds. F. Courbin, D. Minniti. To be published by Springer-Verlag 2002. Paper with full resolution figures can be found at ftp://oden.oso.chalmers.se/pub/tommy/mmviews.ps.g
    corecore