59 research outputs found

    A Parameter Estimation Scheme for Multiscale Kalman Smoother (MKS) Algorithm Used in Precipitation Data Fusion

    Get PDF
    A new approach is presented in this paper to effectively obtain parameter estimations for the Multiscale Kalman Smoother (MKS) algorithm. This new approach has demonstrated promising potentials in deriving better data products based on data of different spatial scales and precisions. Our new approach employs a multi-objective (MO) parameter estimation scheme (called MO scheme hereafter), rather than using the conventional maximum likelihood scheme (called ML scheme) to estimate the MKS parameters. Unlike the ML scheme, the MO scheme is not simply built on strict statistical assumptions related to prediction errors and observation errors, rather, it directly associates the fused data of multiple scales with multiple objective functions in searching best parameter estimations for MKS through optimization. In the MO scheme, objective functions are defined to facilitate consistency among the fused data at multiscales and the input data at their original scales in terms of spatial patterns and magnitudes. The new approach is evaluated through a Monte Carlo experiment and a series of comparison analyses using synthetic precipitation data. Our results show that the MKS fused precipitation performs better using the MO scheme than that using the ML scheme. Particularly, improvements are significant compared to that using the ML scheme for the fused precipitation associated with fine spatial resolutions. This is mainly due to having more criteria and constraints involved in the MO scheme than those included in the ML scheme. The weakness of the original ML scheme that blindly puts more weights onto the data associated with finer resolutions is overcome in our new approach

    On the Statistical Multiplexing Gain of Virtual Base Station Pools

    Full text link
    Facing the explosion of mobile data traffic, cloud radio access network (C-RAN) is proposed recently to overcome the efficiency and flexibility problems with the traditional RAN architecture by centralizing baseband processing. However, there lacks a mathematical model to analyze the statistical multiplexing gain from the pooling of virtual base stations (VBSs) so that the expenditure on fronthaul networks can be justified. In this paper, we address this problem by capturing the session-level dynamics of VBS pools with a multi-dimensional Markov model. This model reflects the constraints imposed by both radio resources and computational resources. To evaluate the pooling gain, we derive a product-form solution for the stationary distribution and give a recursive method to calculate the blocking probabilities. For comparison, we also derive the limit of resource utilization ratio as the pool size approaches infinity. Numerical results show that VBS pools can obtain considerable pooling gain readily at medium size, but the convergence to large pool limit is slow because of the quickly diminishing marginal pooling gain. We also find that parameters such as traffic load and desired Quality of Service (QoS) have significant influence on the performance of VBS pools.Comment: Accepted by GlobeCom'1
    corecore