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Abstract. A new approach is presented in this paper to effectively ob-4

tain parameter estimations for the Multiscale Kalman Smoother algorithm.5

This approach has demonstrated promising potentials in deriving better data6

products based on data of different spatial scales and precisions. Our new7

approach employs a multi-objective parameter estimation scheme (called MO8

scheme), rather than using the conventional maximum likelihood scheme (called9

ML scheme), to estimate the MKS parameters. Unlike the ML scheme, the10

MO scheme is not simply built on strict statistical assumptions related to11

prediction errors and observation errors, rather,it directly associates the fused12

data of multiple scales with multiple objective functions in searching best13

parameter estimations for MKS through optimization. In the MO scheme,14

objective functions are defined to facilitate consistency among the fused data15

at multiscales and the input data at their original scales in terms of spatial16

patterns and magnitudes. The new approach is evaluated through a Monte17

Carlo experiment and a series of comparison analyses using synthetic pre-18

cipitation data. Our results show that the MKS fused precipitation performs19

better using the MO scheme than that using the ML scheme. Particularly,20

improvements are significant compared to that using the ML scheme for the21

fused precipitation associated with fine spatial resolutions. This is mainly22

due to having more criteria and constraints involved in the MO scheme than23

those included in the ML scheme. The weakness of the original ML scheme24

that blindly puts more weights onto the data associated with finer resolu-25

tions is overcome in our new approach.26
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1. Introduction

Most of weather-driven environmental simulations require reliable precipitation data as27

input, which significantly affects terrestrial water and energy budget, land-atmosphere28

interactions, ecological processes and some bio-geochemical processes. The quality of29

precipitation data has direct and essential impacts on the reliability and applicability30

of simulation results. However, none of the precipitation data are perfect enough to31

completely satisfy the expectations of environmental simulations, which is mainly due to32

the limits associated with precipitation measurements, typically including rain gauges,33

weather radars and weather satellites. Rain gauges are reliable at local points but poor at34

capturing spatial pattern of the precipitation. On the contrary, weather radars are good at35

capturing spatial patterns but poor at absolute magnitudes. In addition, weather radars36

are also limited at spatial coverage and do not work well in mountainous regions. Weather37

satellites further include polar orbit satellites with microwave imagers and geostationary38

orbit satellites with infrared imagers. Comparing these two types of satellites, the former39

measures precipitation at higher spatial resolutions but lower temporal resolutions while40

the latter is associated with coarser spatial resolutions but finer temporal resolutions.41

In addition to the representability of measurement instruments, uncertainty is another42

issue of the precipitation data, even for those produced with cutting-edge technologies,43

such as satellite-borne sensors [Tian and Peters-Lidard , 2010]. In order to improve the44

environmental simulations, it is fundamentally important to derive precipitation data45

products with better representability and lower uncertainty through data fusion in which46
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multiple precipitation measurements, even simulated precipitation by numerical weather47

models, are effectively combined.48

Fusion of the precipitation data is generally associated with multiscales due to two49

reasons: (1) sensors available for precipitation measurements are associated with multi-50

ple spatial resolutions; and (2) data processing algorithms and weather/climate models51

are usually operated at a different scale as well. Also, environmental applications may52

require precipitation data at yet another different spatial resolution. Thus, data fusion53

algorithms for precipitation should be able to deal with input and output data at multiple54

scales. Furthermore, fusion of the data from different sources with different scales makes it55

possible to extract useful information of different sources and then have the information56

effectively combined to form a new dataset at the same or different spatial resolutions57

for applications. This is especially beneficial for hydrological and land surface simula-58

tions. As is known, precipitation data products may be good at either spatial patterns59

or magnitudes but hardly at both [Jayakrishnan et al., 2004; Voisin et al., 2008]. For60

example, the precipitation data product of the National Weather Service (NWS) Next61

Generation Weather Radar (NEXRAD) Multisensor Precipitation Estimation (MPE) has62

a finer spatial resolution of 4 km, which is favorable in describing spatial patterns of the63

precipitation. However, it is noisy and sometimes has large biases in terms of its mag-64

nitude compared to the rain gauge measurements [Wang et al., 2008; Nan et al., 2010].65

Precipitation data products of North American Land Data Assimilation System (NLDAS)66

are better at describing magnitude since they are determined based on Climate Prediction67

Center (CPC) daily gauged precipitation data [Cosgrove et al., 2003]. Nevertheless, they68

are not very good at describing the spatial patterns due to their relatively coarse spa-69
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tial resolution, i.e., 0.125◦. It is reasonable to infer that more reliable precipitation data70

products can be derived by combining the NEXRAD MPE data with the NLDAS data71

through a multiscale data fusion approach [Nan et al., 2010]. Moreover, if precipitation72

data products at multiple spatial resolutions are required, the advantages of employing a73

multiscale precipitation fusion approach becomes even more obvious.74

Among the data fusion algorithms such as artificial neural network [Sorooshian et al.,75

2000], Kalman Filter [Smith and Krajewski , 1991; Ushio et al., 2009] and statistical meth-76

ods [Ly et al., 2011], the Multiscale Kalman Smoother (MKS) algorithm [Chou and Will-77

sky , 1991; Chou et al., 1994; Willsky , 2002; Parada and Liang , 2004] offers many good78

features which are particularly important for conducting the multiscale precipitation data79

fusion as illustrated in Wang et al. [Wang et al., 2011] through a systematic investiga-80

tion and analyses. The MKS algorithm is based on the theory of Markov random field81

over space. It can easily fuse multi-resolution (multiscale) data organized by a quadtree,82

as shown in Figure 1. With this MKS algorithm, fused precipitation at any scale rep-83

resented by the quadtree can be derived. The MKS algorithm, also bearing the name84

of scale-recursive estimation (SRE) method, has been examined in multiscale precipita-85

tion data fusion applications and demonstrated great potentials. For example, Gorenburg86

et al. [2001] evaluated the SRE method in the assimilation of radar precipitation data87

and satellite precipitation data, which are at 2.5 km and 15 km respectively. The SRE88

method exhibited descent capability by reproducing withheld radar measurements with89

fused precipitation data. Such kind of evaluation has also been done by Van de Vyver90

and Roulin [2009] with precipitation data of weather radar and satellite microwave mea-91

surements. Similarly, Bocchiola [2007] examined SRM method upon fusing precipitation92
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measurements of TMI radiometer and PR radar boarded on the TRMM satellite and93

NEXRAD radar. In addition to studies in the spatial domain, SRE method has also been94

evaluated in the time domain to fuse precipitation data at varying temporal resolutions95

[Tustison et al., 2002]. In addition to the applications to the precipitation data fusion,96

the MKS algorithm has also been applied to soil moisture data assimilation [Parada and97

Liang , 2004, 2008; Kumar , 1999], altimetry data fusion [Slatton et al., 2001, 2002] and98

imagery data fusion [Huang et al., 2002; Simone et al.]. All of these studies have shown99

that more reliable data products can be derived with the MKS algorithm by fusing or100

assimilating multiscale data if the algorithm parameters are determined properly.101

MKS is an algorithm with high degree of freedom due to its relatively large number102

of parameters, which are involved in characterizing measurement errors, prediction errors103

and state-space equations. Performance of the MKS algorithm, like other algorithms,104

heavily depends on the proper estimations of these parameters. The Maximum Likelihood105

(ML) based methods are typically used in the parameter estimation of the MKS algorithm106

because of its simple statistical formulation and high computational efficiency [Chou, 1996;107

Digalakis et al., 1993; Bocchiola, 2007]. Applying the Expectation-Maximization (EM)108

method, the maximum likelihood parameters of the MKS algorithm can be determined109

through iterations when there are latent variables involved in the MKS model framework110

e.g., [Kannan et al., 2000; Parada and Liang , 2004; Gupta et al., 2006]. However, it is111

quite often that both the ML method and the EM method only find local optimums but112

not global optimal estimations of the MKS parameters in practical applications. This is113

mainly because that the ML and EM methods strictly assume measurement errors and114

prediction errors to be independent and to follow zero-mean Gaussian distributions. Such115
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assumptions make the derivation of the likelihood functions straightforward and simple116

to implement, but they are too strong to be generally satisfied by the precipitation data.117

Therefore, the MKS algorithm cannot have the precipitation data optimally fused at all118

spatial scales when the ML method and the EM method are applied, as illustrated and119

discussed in [Wang et al., 2011]. In fact, [Wang et al., 2011] showed that the fused120

precipitation data was significantly improved at the coarse resolution (e.g. 1/8◦) while121

the improvement at the fine resolution (e.g. 1/32 ◦) is limited or even deteriorated if the122

finer resolution data are much noisier than the coarse resolution data. This is due to a123

combined effect that only local optimal parameters are found and that too much weight124

is placed to the finer resolution precipitation data by the EM method associated with the125

MKS algorithm, which is fine if the noisy levels at the different scales are comparable. In126

this study, we present a new scheme to improve the parameter estimations for the MKS127

algorithm so that the weaknesses of the ML method are overcome or at least mitigated128

while the strengths of the ML method are kept and that the improvements are achieved129

at multiple scales (i.e., at both coarse and fine scales).130

The new parameter estimation scheme for the MKS algorithm is primarily designed131

to improve the performance of the MKS algorithm at finer resolutions in the multiscale132

data fusion applications. The new scheme is based on a multi-objective optimization133

approach, and is referred to as MO scheme hereafter. Similarly, we refer the EM method134

that is used to estimate the maximum likelihood parameters of the MKS algorithm to135

as ML scheme hereafter. Different from maximizing only a log-likelihood function in136

the ML schemes, the MO scheme maximizes a number of objective functions, which137

are metrics directly related to the objectives of the multiscale precipitation data fusion.138
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To solve the multi-objective optimization problem investigated in this study, we use a139

multi-objective particle swarm optimization (MOPSO) algorithm. The particle swarm140

optimization (PSO) algorithm was firstly proposed by Kennedy and Eberhart [1995], and141

it has been proved to be effective and efficient for optimizing hydrological parameters142

[Gill et al., 2006]. In addition, the MOPSO algorithm has been shown to be effective for143

different multi-objective optimization problems [Hu and Eberhart , 2002; Hu et al., 2003].144

In this study, we have designed and implemented a parallel MOPSO algorithm to solve145

our multi-objective optimization problem.146

In the remaining part of this paper, a briefly description of the MKS algorithm and the147

EM scheme is provided in section 2 to have this paper self-contained. Detailed description148

and formulation of the MO scheme are presented in section 3. Evaluations of the MO149

scheme are presented in section 4 through a Monte Carlo experiment and 12 comparison150

experiments. A summary of this study is included in section 5.151

2. Descriptions of the MKS algorithm and the ML Scheme

2.1. The MKS Algorithm

In the application of the MKS algorithm to precipitation data fusion, scale means the152

spatial resolution of precipitation data. The MKS algorithm includes a fine-to-coarse153

sweep of the Kalman filtering step and a coarse-to-fine sweep of the Kalman smoothing154

step. Both sweeps are conducted along a multiscale tree, as shown in Figure 1. In the scale155

domain, a linear state-space model that relates measurements at neighboring resolutions156

is given as follows:157

X(t) = A(t)X(tγ̄) + w(t) (1)158
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159

P (t) = A2(t)P (tγ̄) +Q(t) (2)160

where X(t) and X(tγ̄) represent the precipitation estimates at a child node and its parent161

node, respectively, w(t) is the prediction error following N(0, Q(t)), Q(t) is the variance162

of w(t), P (t) and P (tγ̄) are the error variances of X(t) and X(tγ̄), and A(t) is a transition163

operator mapping precipitation amount from a parent node to a child node.164

Given the prior estimates of the precipitation amount at the root node and its associated165

error variance, which are denoted with X(0) and Σ(0) respectively, the unconditional166

estimates of precipitation and their error variances at the remaining nodes of the multiscale167

tree can be computed using equation (1) and (2). Such a step is referred as initialization.168

After that, an upward sweep is conducted from the leaf nodes toward the root node with169

the inverted forms of equations (1) and (2) and a measurement equation170

Y (t) = C(t)X(t) + v(t) (3)171

where Y (t) is the measurement at node t, C(t) is a transition operator mapping pre-172

cipitation amount to measurement, v(t) is the variance of measurement error following173

N(0, R(t)). This step indeed is Kalman filtering at the scale domain. Once it is done, all174

unconditional estimates of precipitation have been updated according to measurements at175

their and finer resolutions. Following the upward sweep, a downward sweep is conducted176

from the root node toward the leaf nodes to refine precipitation estimates according to177

measurements at coarser resolutions through Kalman smoothing. For a complete formu-178

lation of the MKS algorithm for general purposes, readers are referred to Kannan et al.179

[2000]; Parada and Liang [2004].180
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In a simple case that measurements are available at all nodes of a multiscale tree181

(denoted with T ), the MKS algorithm has a set of parameters, including Σ(0) and182

{A(t), C(t), Q(t), R(t)|t ∈ T }. Since all measurements have been converted into pre-183

cipitation amounts, we can set A(t) = 1.0 and C(t) = 1.0 for all nodes in precipitation184

data fusion. However, the rest of the parameters, namely Σ(0), R(t) and Q(t) need to be185

estimated. In reality, R(t) and Q(t) may vary over space even for measurements at the186

same sale. If R(t) and Q(t) are to be estimated at every node, the number of parameters187

would be more than the number of measurements, i.e., the number of nodes with valid188

measurements. In this instance, the parameters would be hard to be estimated adequately.189

In order to resolve this issue, we assume that R(t) and Q(t) are scale homogeneous. In190

other words, they are respectively identical for measurements at the same scale. Conse-191

quently, the number of parameters is significantly reduced to be much smaller than the192

number of measurements. Therefore, the parameters can be estimated based on available193

measurements without any further assumptions or constraints.194

2.2. The ML Scheme

Assuming that the relationships described by equation (1) and (2) are indepen-195

dently held at all nodes of a multiscale tree (T ), the log-likelihood function can be196

expressed as follows, where we denote the parameter set of the MKS algorithm as θ197

(θ = {Σ(0), R(t), Q(t)|t ∈ T })198

L(X, Y |θ) = −1

2

∑
t∈Tc

{log (Q(t)) + [X(t)− A(t)X (tγ̄)]2 Q(t)−1}199

−1

2

∑
t∈Tm

{log (R(t)) + [Y (t)− C(t)X(t)]2R(t)−1} (4)200
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where Tc represents a subset of T except the root node, Tm represents a subset of T201

with measurements, and Y represent measurements. Given measurements Y , precipita-202

tion estimates X are dependents of the parameter set θ. Therefore, L(X, Y |θ) can be203

regarded as a function of θ with given measurements and accordingly θ can be estimated204

by maximizing L(X, Y |θ).205

In the ML scheme, parameter set θ is determined using the EM algorithm, which in-206

cludes an expectation step (E-step) and a maximization step (M-step). In the multiscale207

precipitation data fusion applications, one cycle of the upward sweep and the downward208

sweep of the MKS algorithm serves as the E-step, which computes smoothed estimates209

of precipitation as statistical expectation. After the E-step, parameters θ are the only210

free variables in L(X, Y |θ). The M-step is to maximize the log-likelihood (Equation 4)211

by adjusting the parameters using a numerical approach, such as gradient-based meth-212

ods. Details about the ML scheme with the EM algorithm can be found in Kannan et al.213

[2000].214

3. Multi-Objective Parameter Scheme

Our multi-objective (MO) scheme for the MKS algorithm is explicitly constructed on215

the expectation of multiscale precipitation data fusion. Generally, multiscale precipitation216

data fusion is to derive new precipitation products, which are expected to be better in217

representing the spatial patterns and magnitudes of the precipitation at the original scales218

of the input data or at any other scales depending on applications. But, on the other hand,219

these fused datasets should also be expected to inherit, more or less, the characteristics220

of the spatial patterns and the magnitudes of their original data sources. In principle, if221

the parameters of the MKS algorithm are reasonably estimated for representing the errors222
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associated with each data source, then the spatial patterns and the magnitudes of the fused223

precipitation data derived with MKS algorithm should be consistent with each other at224

all output scales according to the quality of each of the data sources. However, due to225

the limitations discussed in section 1, neither the popular maximum likelihood method226

nor the EM method is adequately effective in finding the MKS parameters in all practical227

applications due to the local maximums, which usually over-weight the observations at228

finer resolutions. Our idea is thus to force the optimization search to find a better optional229

parameter set by introducing more physically sound constraints. To this end, we introduce230

two spatial correlation related objective functions to constrain the search for a typical case231

of fusing two data sources. In order to avoid over smoothing, we also introduce some other232

objective functions to maximize maximum precipitation or maximum information in fused233

precipitation data.234

In a multiscale precipitation data fusion, the consistency in spatial patterns among235

output scales can be measured either with correlation (Corr) or root mean square er-236

ror (RMSE). The former focuses more on spatial patterns while the latter focuses more237

on magnitudes. Correlation has intuitive statistical meaning and fixed lower and upper238

boundaries, i.e.,-1.0 and 1.0. In addition, correlation is monotonically related to RMSE in239

the multiscale precipitation data fusion using the MKS algorithm. That is, for the same240

data, RMSE decreases with an increase in Corr. Therefore, correlation would be a proper241

measure of the consistency among fused precipitation data.242

In order to calculate the correlation of two datasets associated with two different spatial243

scales (e.g., 1/8◦, and 1/32◦), one can either aggregate the finer resolution data of 1/32◦244

into the coarser resolution (i.e., 1/8◦) or disaggregate the coarser resolution data of 1/8◦245
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into the finer resolution (i.e., 1/32◦). Subsequently, one can calculate the correlations at246

both of these resolutions. For the purpose of this study, we try to obtain the correlation247

between the two fused precipitation data at 1/8◦ as high as possible. For example, a value248

of 1.0 indicates that the finer fused precipitation data (e.g., 1/32◦) has a perfect consis-249

tency with the fused precipitation data at the coarser resolution (e.g., 1/8◦). While for the250

correlation at 1/32◦, we try to have the correlation between the two fused precipitation251

data close to a target correlation value, which is close but less than 1.0. For example, the252

target correlation can be 0.90. This roughly implies that 90% spatial pattern of the fused253

precipitation data at the finer resolution is consistent with the fused precipitation data at254

the coarser resolution while the 10% differences are due to the variations associated with255

the details of the fused data at the finer resolution compared to the fused data at the256

coarser resolution. In this way, one can basically use the correlation measure to facilitate257

the consistency among the fused precipitation datasets at two different spatial scales, i.e.,258

at both the finer and coarser resolutions.259

The MKS algorithm is a smoother by nature. If parameters are not well estimated, there260

is a risk that the fused precipitation data are over smoothed. Once the over-smoothing261

happens, the maximum value of the fused precipitation would be significantly smaller than262

that without being over-smoothed. Mean while, the information content of precipitation263

data will be partially lost. Thus it is important to avoid such over-smoothing from hap-264

pening. Two approaches are proposed independently with the MO scheme. One approach265

is to maximize the largest values of fused precipitation data at all of output scales. The266

other is to maximize the Shannon information entropy of fused precipitation data at all267
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output scales. The advantages and disadvantages of these two approaches is going to be268

illustrated in section 4.269

Based on the discussions above, we propose to improve the estimation of the MKS pa-270

rameters by formulating a multi-objective optimization problem, in which we introduce271

two groups of objective functions. The first group include a number of spatial correla-272

tions as measures of consistency among fused precipitation data at output scales. The273

second group include a number of maximization functions of either largest value or the274

information entropy of fused precipitation data at output scales. In the following, specific275

objective functions are given for a simple case with two precipitation data sources. For276

notational convenience, let us specify X to represent the fused precipitation data, super-277

script − and + to represent, respectively, before and after the data fusion, subscript c and278

f to represent, respectively, a coarse and a fine resolution, c → f to represent disaggrega-279

tion from a coarse resolution to a fine resolution and f → c to represent aggregation from280

a fine resolution to a coarse resolution. The estimation of the MKS parameters can be281

achieved via maximizing the following four objective functions if maximization of largest282

value of fused precipitation data is used to avoid over-smoothing:283

g1(θ) = Corr
(
X+

c , X
+
f→c

)
(5)284

285

g2(θ) = −|Corr
(
X+

f , X
+
c→f

)
− ρ| (6)286

287

g3(θ) = max(X+
c ) (7)288

289

g4(θ) = max(X+
f ) (8)290

in which, g1(θ) measures the consistency of the fused precipitation data at a coarse reso-291

lution; g2(θ) measures the consistency of the fused precipitation data at a fine resolution,292
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ρ is a slack parameter to relax the consistency requirement at the finer resolution; g3(θ)293

and g4(θ) are the maximum values of the fused precipitation data at the coarse and the294

fine resolutions, respectively. As mentioned previously, the slack parameter is added to295

avoid over-smoothing at the finer resolution. If maximization of information entropy is296

used to avoid over-smoothing, g3(θ) and g4(θ) will be replaced with g5(θ) and g6(θ) as297

shown in the following:298

g5(θ) = −
n∑

i=1

p(x+
c,i) log p(x

+
c,i) (9)299

300

g6(θ) = −
n∑

i=1

p(x+
f,i) log p(x

+
f,i) (10)301

where n is number of precipitation bins and i is the index of precipitation bin. In this302

study, precipitation values are evenly categorized into bins with a bin size of 0.1 mm.303

The multi-objective optimization problem formulated with equations (5), (6), (7) and304

(8) (or (9) and (10)) can be solved in many ways. In this study (i.e., MO scheme), it is305

solved with a multi-objective particle swarm optimization (MOPSO) algorithm [Wang ,306

2011]. Similar to most multi-objective optimization algorithms, the MOPSO algorithm307

returns not a single optimal solution but a set of Pareto frontiers. However, only one308

optimal parameter set is to be used in the precipitation data fusion using the MKS algo-309

rithm. Our strategy of selecting the optimal solution from the Pareto frontiers includes310

two steps: (1) select solutions with the largest g1(θ) + g2(θ), and (2) find the solution311

with the largest g3(θ) + g4(θ) or g5(θ) + g6(θ) from those identified in step (1). Note that312

the solution of our proposed MO scheme can be obtained by any handy multi-objective313

optimization solver, such as genetic algorithms and simulated annealing algorithms.314

We hypothesize that by applying the MO scheme to the four objective functions de-315

scribed by equations (5), (6), (7) and (8), we can not only obtain better MKS parameter316
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estimates, but also these estimates are able to keep the essential strengths of those asso-317

ciated with the ML scheme and overcome, at least to a large extent, the weaknesses of318

the ML scheme. This hypothesis will be assessed by adding the likelihood function, i.e.319

Equation (4), as one more objective function in section 4.320

4. Evaluations

4.1. Experiment Design

Two types of experiments are designed to evaluate the ML scheme and our proposed321

MO approach. The first is a Monte Carlo experiment, which demonstrates the limitation322

of the ML scheme and illustrates the rationality for developing the MO scheme. The323

second is a comparison experiment, which include between-group comparisons and in-324

group comparisons. The effectiveness of the ML scheme and the MO scheme is statistically325

evaluated through between-group comparisons. The two approaches of avoiding over-326

smoothing are evaluated through in-group comparisons.327

To make the analysis of this study be more representative, in other words, closer to real328

applications, we select a large study domain (Figure 2), bounded by longitudes (88◦W,329

84◦W) and latitudes (37.75◦N, 41.75◦N), for both types of experiments. The domain330

includes 128 × 128 grids at 1/32◦ resolution and 32 × 32 grids at 1/8◦ resolution. The331

average annual precipitation in this area is about 1,000 mm. Precipitation is relatively332

evenly distributed throughout a year. Typically, precipitation is steady and of long du-333

ration in winter and early spring and short but of high intensity during late spring and334

summer.335

Synthetic noisy precipitation data are used in both types of experiments to evaluate the336

effectiveness of our new approach (i.e., the MO scheme), compared to the ML scheme, in337
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obtaining the MKS parameter estimates. The synthetic noisy data are generated based338

on a set of hourly NEXRAD MPE precipitation data and noises added to the MPE339

data. The MPE data, which were at a spatial resolution of 4 km and in a specific data340

format, namely XMRG, were projected into the longitude-latitude coordinate system and341

re-sampled into 1/32◦ and 1/8◦ resolutions, respectively. The noises are generated based342

on the Gaussian distributions with zero mean and different standard deviations that are343

prescribed according to the MPE data.344

These standard deviations are set to be proportional to the standard deviations of the345

MPE data. For example, at hour k one has the MPE precipitation data (i.e., true data)346

Xk of a 2-dimensional (2-D) field. Based on it one can calculate the standard deviation347

of Xk, denoted as sk. Then, white noises can be sampled from the Gaussian distributions348

of N (0, nisk) , where ni, called noise level hereafter, is a multiple of sk that controls the349

level of perturbation. The sampled values (i.e., the noises) from N (0, nisk) are then added350

to Xk to obtain the synthetically generated noisy precipitation datasets that correspond351

to different noisy levels. If ni = 1, the standard deviation of added noises is actually352

the same as the standard deviation of the real MPE precipitation data of the kth hour.353

Note that the synthetically generated precipitation value may be negative if the generated354

white noise has a large negative value. In such a situation, a new value of the white noise355

will be generated until the synthetic precipitation value is not negative. In other words,356

the noises generated are from truncated Gaussian distributions.357

This adaptive approach brings three favorable features to the synthetic precipitation358

datasets. First, the magnitudes of generated data are guaranteed to be non-negative,359

which is essential to describe precipitation. Second, the added noises are generated based360
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on normal distribution but not strictly normally distributed due to the noise re-generation361

procedure. Third, it is easy to control the magnitudes of the noises by adjusting the noise362

level, i.e. ni.363

For details of this synthetic data generation method and the properties of its generated364

precipitation data, readers are referred to the work byWang et al. [2011]. We use synthetic365

precipitation datasets here to evaluate the MO and ML schemes. It is mainly due to the366

advantage of being able to control the magnitudes of errors/noises to be included in367

the generated precipitation datasets. Thus, using such datasets would be more effective368

in evaluating the strengths and weaknesses of the MO and ML schemes on the MKS369

parameter estimates and the impacts of the MO and ML schemes on precipitation data370

fusion results using the MKS algorithm. In fact, the approach of using synthetic data has371

been widely used in data assimilation study for the convenience of performance evaluation372

[e.g., Walker and Houser, 2004].373

In both types of experiments, we apply the MKS algorithm to fuse one set of precip-374

itation data at a coarser resolution, i.e. 1/8◦ with the other set of precipitation data at375

a finer resolution, i.e. 1/32◦. Based on the NEXRAD MPE precipitation data, we have376

two sets of the synthetic precipitation data generated for an entire year of 2003 at both377

the coarser (1/8◦) and the finer (1/32◦) resolutions. There are totally 2246 precipitation378

events in each set of the synthetic data. As mentioned in section 2, we need to organize379

the input data in a multiscale tree, which is illustrated in Figure 1 with an example,380

before applying the multiscale data fusion using the MKS algorithm. The total number of381

the scales of such a multiscale tree depends on the size of an experiment domain and the382

resolutions of the input data. In this study, the multiscale tree built for the experiment383
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domain has 8 scales indexing from 0 to 7. Resolutions of 1/8◦ and 1/32◦ correspond to,384

respectively, scales 5 and 7 of the multiscale tree. Therefore, we also call the data at 1/8◦385

and 1/32◦ resolutions as scale 5 data and scale 7 data, respectively386

In this study, three series of synthetic precipitation datasets at scale 5 are generated with387

the noise levels of n5=1.0, 2.0 and 3.0 and four series of synthetic precipitation datasets388

at scale 7 are generated with the noise levels of n7=1.0, 2.0, 3.0 and 4.0. Each data series389

includes 2246 synthetic hourly precipitation fields over the experiment domain. There is390

one more noise level employed at scale 7 to describe the reality that precipitation data at391

finer resolutions may be noisier than those at coarser resolutions.392

The goal of the multiscale precipitation data fusion is to improve the spatial pat-393

tern and the magnitude of precipitation data at multiple scales. To evaluate whether394

such a goal is achieved, we use ΔCorrs = Corr(X true
s , X+

s ) − Corr(X true
s , X−

s ) and395

ΔRMSEs = RMSE(X true
s , X−

s ) − RMSE(X true
s , X+

s ) as the metrics at scale s, where396

X true
s represents the true precipitation amounts, X−

s represents the synthetically generated397

precipitation values, and X+
s represents the fused precipitation values. Corr(X true

s , X−
s )398

and Corr(X true
s , X+

s ) are also expressed as Corr−s and Corr+s for short. Similarly,399

RMSE(X true
s , X−

s ) and RMSE(X true
s , X+

s ) are expressed as RMSE−
s and RMSE+

s for400

short as well. The effectiveness of the ML and MO schemes is evaluated using ΔCorr and401

ΔRMSE. If a parameter estimation scheme helps to result in a larger ΔCorr, it means402

that this scheme is better than the other schemes for improving the spatial pattern of the403

precipitation data. Similarly, if a parameter scheme helps to result in a larger ΔRMSE,404

it means this scheme is better than the other scheme for improving the magnitudes of405

precipitation data.406
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For clear discussions we use box plots to illustrate most of experement results con-407

ducted in this study. Box plots are a convenient way of graphically depicting distribu-408

tions of samples with the lower (25th) quartile, median, the upper (75th) quartile, 1.5409

IQR (interquartile range) of the lower quartile, and 1.5 IQR of the upper quartile. If the410

samples approximately follow a normal distribution, over 99% of them would fall within411

the upper and the lower whiskers shown between the 1.5 IQRs of the lower quartile and412

the upper quartile. In addition, box plots also mark the mean values of each statistical413

variable, which are used in the result analysis for the comparison experiments in section414

4.3. Figure 3 shows the box plots for correlation (vertical axes in the two upper plots)415

and RMSE (vertical axes in the two lower plots) which are obtained between the 2246416

true and synthetic precipitation fields of 2003. The horizontal axes represent the values417

taken for n5 and n7, respectively. From Figure 3, one can see, as expected, that the cor-418

relation (RMSE) decreases (increases) as the variance increases for both scales 5 and 7,419

respectively. Figure 3 provides a benchmark for this study as both the MO scheme and420

the ML scheme are expected to generate higher Corr and lower RMSE at scale 5 and421

scale 7 than the corresponding ones shown in Figure 3.422

4.2. Monte Carlo Experiment

Monte Carlo experiments are designed to examine the effectiveness of the ML scheme in423

the multiscale precipitation data fusion process using the MKS algorithm. Based on the424

results of the Monte Carlo experiment, one can see the weaknesses of the ideal/theoretical425

ML scheme when it is applied to real-world applications, in which assumptions and con-426

ditions required by the ML scheme and the MKS algorithm are not met exactly. Through427
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the Monte Carlo experiment results, one can also see the rationale behind in developing428

the MO scheme for the MKS algorithm.429

The Monte Carlo experiment includes three steps: (1) generating a large amount of430

parameter sets in their feasible spaces, (2) conducting data fusion with generated param-431

eter sets, and (3) computing the corresponding log-likelihood, Corr+s and RMSE+
s . As432

described in section 2.2, the ML scheme identifies parameters for the MKS algorithm by433

maximizing the log-likelihood function (i.e., equation 4). If all the requirements/ condi-434

tions are met, the ML scheme can find the global optimal parameter estimations for the435

MKS algorithm used in multiscale precipitation data fusion. Thus, Corr+s (s=5 and 7)436

should reach its maximum and RMSE+
s should reach its minimum when the log-likehood437

reaches its maximum.438

In this study, only one representative precipitation event is selected for conducting the439

Monte Carlo experiment. Occurred at 09Z 09/22/2003, the precipitation event was a440

summer storm and covered about 95% area of the experiment domain shown in Figure441

2. In the Monte Carlo experiment, the noise levels, i.e. n5 and n7, are set to 2.0 when442

generating the synthetic precipitation data at both scales 5 and 7. We randomly sample443

1,000,000 parameter sets, including Σ(0), Q(s) (s=1, 2, · · ·, 7), and R(s) (s=5 and 7)444

using a uniform distribution. Since all parameters are essentially error variances of pre-445

cipitation data, the feasible range is set to [0.1, 10.0] for each of them. After fusing the446

precipitation data at scales 5 and 7 with all sampled parameters using the MKS algorithm,447

we compute the log-likelihood, Corr+5 , Corr+7 , RMSE−
5 and RMSE+

7 corresponding to448

every parameter set.449
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The effectiveness of the ML scheme is examined based on the relationships between the450

log-likelihood and Corr+5 , Corr+7 , RMSE+
5 , RMSE+

7 respectively, which are shown in the451

scatter plots of Figure 4. An essential finding from Figure 4 is that the ML scheme has452

different effectiveness at scale 5 and scale 7. First, it is much more effective at scale 5 than453

at scale 7. Both Corr+5 and RMSE+
5 converge to their maximum and minimum values,454

respectively, when the log-likelihood approaches its maximum. As an objective function,455

the log-likelihood defined in equation 4 appears to be consistent to the correlation and456

RMSE at the coarser resolution in the Monte Carlo experiment. This provides an adequate457

proof that the ML scheme is more likely to be able to produce parameter estimates for458

the MKS algorithm that are in favor of the fused precipitation data products at coarser459

resolutions.460

On the other hand, the ML scheme is not guaranteed to result in parameter estimates461

which are also effective for the fused data at scale 7. That is, local optimals rather than462

global optimals are likely obtained by the ML scheme in this case when the requirements463

and conditions of the ML scheme are fully met. As shown in Figure 4, Corr+7 may464

converge to two substantially different extreme values when the log-likelihood approaches465

to its maximum. One extreme value is closed to the upper bound of Corr+7 while the466

other is closed to the lower bound of Corr+7 (see Figure 4). Similar situation also occurs467

to RMSE as shown in Figure 4. If Corr+7 goes to its lower extreme value or RMSE+
7 goes468

to its upper extreme value, there will be no gain through the precipitation data fusion in469

terms of improving the spatial patterns and magnitudes of the precipitation data at scale470

7. This example clearly indicates that the estimated parameters using the ML scheme471

may not work for the fused precipitation data at finer resolutions due to the combined472
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effects of encountering local maximums and the required conditions for the algorithms473

being not fully met in the real-world applications.474

Nevertheless, there are no monotonous relationships between the log- likelihood and475

Corr+s or RMSE+
s for s=5 and 7. An increase of the log-likelihood does not necessarily476

mean an increase of Corr+s or a decrease of RMSE+
s . In the ML scheme used in this study,477

the log- likelihood is maximized using the EM algorithm, which usually stops iterating478

when the log-likelihood reaches a local maximum or after a given number of iterations is479

reached. This example clearly illustrates the limitations of the ML scheme.480

Findings of the Monte Carlo experiments here are consistent with the results shown in481

the study byWang et al. [2011], which found that the improvements at a coarser resolution482

are much more significant than those at a finer resolution when the precipitation datasets483

are fused using the MKS algorithm with the ML scheme as its parameter estimation484

method. The maximization of the log-likelihood is neither a necessary nor a sufficient485

condition for achieving improvements of the fused precipitation data at finer resolutions.486

If one wants to achieve improvements at multiple scales, especially at finer resolutions,487

there is a critical need to develop a new scheme to estimate the parameters of the MKS488

algorithm.489

4.3. Comparison Experiments

A series of comparison experiments are designed to illustrate the strengths and limita-490

tions of the proposed MO scheme as opposed to the ML schemes. Totally 12 scenarios of491

multiscale precipitation data fusion have been made through combining noisy precipita-492

tion data at a finer resolution and a coarser resolution. As described in section 4.1, we493

have generated the synthetic noisy precipitation data of the coarser resolution (i.e. 1/8◦)494
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with three noise levels (i.e. n5=1.0, 2.0 and 3.0) and the synthetic noisy precipitation data495

of the finer resolution (i.e. 1/32◦) with four noise levels (i.e. n7=1.0, 2.0, 3.0 and 4.0).496

These synthetic precipitation data can form 12 (i.e., 3 × 4) combinations for conducting497

the MKS data fusion. For example, the combination of n5 = 2.0 and n7 = 4.0 indicates a498

scenario in which a set of noisy precipitation data at 1/8◦ resolution is fused with much499

noisier data at 1/32◦ resolution. In this particular example, the noisy level at the finer500

resolution data is about two times of that at the coarser resolution. Generally speaking,501

if n5 > n7, it means that the combination mimics a scenario in which the coarser resolu-502

tion data are fused with less noisy finer resolution data. On the other hand, if n5 < n7,503

it means that the combination mimics a scenario in which the finer resolution data are504

fused with less noisy coarser resolution data. If n5 = n7, it means that the combination505

mimics a scenario in which the coarser resolution data is fused with the finer resolution506

data that has similar or comparable level of the noises. Since the precipitation data at507

finer resolutions is usually noisier than the precipitation data at coarser resolutions in real508

world, the maximum value of n7 (i.e. 4.0) is thus greater than the maximum value of n5509

(i.e. 3.0).510

Each of the 12 scenarios has two series of the synthetic precipitation data to be fused.511

The two series, at 1/32◦ and 1/8◦ resolutions respectively, both include 2246 noisy pre-512

cipitation fields throughout year 2003 in the experiment domain. The two series of data513

have been fused using the MKS algorithm field by field. The ML scheme is firstly used514

in the parameter estimation for the MKS algorithm. Fused precipitation data with the515

ML scheme, notated with number 0 hereafter, are used as references to evaluate the MO516

schemes with three approaches to avoid over smoothing. Equations (5) and (6) are the517
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core part of the MO scheme. No matter which approach is used, they are part of objective518

functions. The first approach uses equation (7) and (8) to maximize the maximum values519

of fused precipitation data; the second approach uses the likelihood function (equation 4)520

in addition to equations (7) and (8); the third approach uses equations (9) and equations521

(10) to maximize the information contents of fused precipitation data at output resolu-522

tions. For notational convenience, the MO schemes with the three approaches are marked523

with number 1, 2, and 3 in result plots and analysis.524

Even though the multiscale precipitation data fusion using the MKS algorithm can525

output fused precipitation datasets at any resolutions from the finest to the coarsest scale526

of the multiscale tree (see Figure 1), we just output the fused precipitation datasets at527

1/8◦ and 1/32◦ resolutions for evaluating the effectiveness of the MO scheme versus the528

ML scheme since the true data are available at these two scales. For each scenario, we529

compute ΔCorrs and ΔRMSE (s = 5, 7) for all of the 2246 precipitation fields (i.e.,530

precipitation images) for schemes 0, 1, 2, and 3. We then compare the statistics (e.g.,531

mean, quartiles) of ΔCorrs and ΔRMSEs, instead of the ΔCorrs and ΔRMSEs for532

individual precipitation fields among schemes 0, 1, 2, and 3. That is the distributions of533

ΔCorrs and ΔRMSE are compared in the following discussions. The large number of534

samples, i.e. 2246, included in the analyses guaranties the statistical significance of our535

comparison studies. Thus, the overall performances of each individual scheme (i.e., the536

MO and ML schemes) can be more objectively evaluated.537

Figure 5 shows the box plots of ΔCorrs (s = 5, 7) for the 12 scenarios. Each of them538

has results obtained with the ML scheme and the three MO schemes. In Figure 5, if a MO539

scheme leads to a larger mean of ΔCorrs, it indicates that the MO scheme statistically540
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perform better than the ML scheme on average based on the 2246 precipitation fields541

investigated. Similarly, if a MO schemes results in a larger value of median, it indicates542

that the MO scheme perform better than the ML scheme over half of the 2246 precipitation543

fields for the given combination of n5 and n7. Otherwise, it indicates that the ML scheme544

performs better than the MO scheme.545

In Figure 5, the differences of ΔCorr5 between results of the ML scheme and the546

MO schemes are relatively small for the 12 scenarios compared to the corresponding547

differences of ΔCorr7. In terms of the ΔCorr5 values, the MO schemes are better in548

eight scenarios, while the ML scheme is better in 4 scenarios in which the noise levels549

at the finer resolution are higher or much higher than those at the coarser resolution.550

These four scenarios are (n5 = 1, n7 = 2), (n5 = 1, n7 = 3), (n5 = 1, n7 = 4), and551

(n5 = 2, n7 = 4). Such results indicate that the MO schemes are slightly under performed552

than the ML scheme on improving the spatial pattern of the coarser precipitation data553

when the coarser precipitation data have better or much better quality than the finer554

precipitation data. For the results of scenarios in which n5 ≥ n7, the MO schemes produce555

larger values of the mean and the median of ΔCorr5 than those of the ML scheme. This556

indicates that the MO schemes perform better than the ML scheme in terms of improving557

the spatial patterns of the precipitation data at coarser resolution when the precipitation558

data at the coarser resolution have poorer quality than those at the finer resolution. In559

addition, the box plots in Figure 5 reveals that the improvements with the MO schemes560

are greater than those with the ML scheme when the coarser precipitation data have much561

poorer quality than the finer precipitation data.562
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In Figure 5, it can be found that the three MO schemes perform closely in terms of563

improving ΔCorr5. For most of the scenarios, the #2 MO scheme is slightly better than564

the #1 MO scheme and the #3 MO scheme is slightly better than the #2 MO scheme565

in terms of the mean, the median, the upper quartile and the lower quartile. However,566

the differences are very small. Comparing to the #1 MO scheme, the computational time567

of the #2 MO scheme is almost doubled because the log-likelihood function is added as568

an extra objective function. The gain of the #2 MO scheme over the #1 MO scheme569

is almost negligible. This implies that the 4 objective functions of the #1 MO scheme570

include most of the information which could be introduced by the log-likelihood function571

(i.e., Eq. 4) for the purpose of improving precipitation data at a coarser resolution. The572

#3 MO scheme also takes about double the computation time of the #1 MO scheme,573

because computing information entropy of equations 9 and 10 takes much longer time574

than finding the maximum precipitation values (equations 7 and 8). Even though the575

gain of the #3 MO scheme is also minor at the coarser resolution compared to the #1576

MO scheme, but the gain at the finer resolution is more noticeable as can be seen in577

Figure 5.578

For the fused precipitation at the finer resolution, i.e., 1/32◦ (scale 7), Figure 5 shows579

that the MO schemes perform better or much better than the ML scheme on improving580

the spatial patterns of the fused precipitation at this resolution for all of the 12 scenarios.581

It does not matter which data quality situations are at the coarser finer resolutions, i.e.582

either n5 > n7, n5 = n7 or n5 < n7, the mean, the lower and upper quartiles, the median,583

and the two whiskers of ΔCorr7 of the three MO schemes are always significantly higher584

than those of the ML scheme. Specifically, all lower quartiles of ΔCorr7 of the three ML585
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schemes are larger than the upper whiskers of corresponding ΔCorr7 of the ML scheme586

when n5 >= n7. This indicates that the MO schemes performs better than the ML587

scheme for at least 75% of the 2246 precipitation fields. When n5 < n7, all of the lower588

whiskers of ΔCorr7 of the MO schemes are larger than the lower whiskers of corresponding589

ΔCorr7 of the ML scheme, which indicates that the MO schemes performs better than590

the ML scheme for at least 90% of the 2246 precipitation fields. This superiority of the591

MO schemes over the ML scheme becomes much more significant when the precipitation592

data at the finer resolution are noisier. Although the MO schemes perform slightly worse593

in 4 scenarios (out of 12 scenarios) than the ML scheme at the coarser resolution, the594

fused precipitation data at the coarser resolution with the ML scale are already quite595

good as shown in the work of Wang et al. [Wang et al., 2011]. Thus, the slightly under-596

performance by the MO schemes at the coarser resolution is not a cause for concern.597

Overall, the good performance by the MO schemes over the ML scheme is promising.598

The three MO schemes perform differently on improving the spatial pattern of precipi-599

tation data at the finer resolution. For most of the scenarios, the mean, the median, the600

upper quartile and the lower quartile of the ΔCorr7 of the #3 MO scheme are clearly601

larger than corresponding ones of the #1 and the #2 MO schemes. #2 MO scheme per-602

forms slightly better than or the same as the #1 MO scheme. This implies again that603

the log-likelihood function (i.e., Equ. 4) included in the #2 MO scheme doesn’t bring604

any significant gain to the fused precipitation data. That is, the effect of the likelihood605

function is indirectly represented by those of equations (5-8). However, the information606

entropy represented by equations 9 and 10 does bring in more information than that by607

equations 7 and 8 at a cost of doubling the computational time.608

D R A F T October 26, 2013, 10:45am D R A F T



WANG AND LIANG: A PARAMETER ESTIMATION SCHEME FOR PRECIPITATION DATA FUSION X - 29

Results of ΔCorr7 of the ML scheme and the MO schemes for each scenario are also609

evaluated using statistical hypothesis tests. Based on the Q-Q plot (figures not shown), we610

find that none of the distributions of ΔCorr7 follow the normal distribution. Therefore, we611

use the Kolmogorov-Smirnov test to examine the differences of ΔCorr7 between the ML612

scheme and the MO schemes to check whether they are significantly different. Unlike the613

paired t-test, which only works well with normal distributions, the Kolmogorov-Smirnov614

test can be used for cases following any type of continuous distributions. The null hy-615

pothesis is that the differences are not significant and the alternative hypothesis is that616

the differences are significant. Results of the Kolmogorov-Smirnov test (at 1% significant617

level) show that the distribution differences of ΔCorr7 between the MO schemes and the618

ML scheme are significant for all of the 12 scenarios shown in Figure 5. These results619

confirm again the significantly better performances with the MO schemes than those with620

the ML scheme at the finer resolution. Based on our results, we can infer that the MO621

schemes are significantly superior to the ML scheme in deriving fused precipitation data622

at finer resolutions in terms of improving the spatial patterns of the precipitation. The623

#1 MO scheme is a better choice for limited computational resources and the #3 MO624

scheme is a better choice when computational resources are sufficient.625

Figure 6 shows the box plots of ΔRMSEs (s = 5, 7) for the 12 scenarios. Like Figure 5,626

each scenario has multiscale precipitation data fusion with the ML scheme and the three627

MO schemes. In Figure 6, if the MO schemes lead to larger values of ΔRMSEs, it indicates628

that statistically, the MO schemes perform better than the ML scheme. Otherwise, the629

MO schemes are statistically not as good as the ML scheme. In addition, if any of the630

MO scheme results in higher values of ΔRMSEs, it means that the MO scheme has a631
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better choice of the objective functions in terms of improving the magnitudes of fused632

precipitation data.633

In Figure 6, the differences of ΔRMSE5 between the ML scheme and the MO schemes634

are relatively small for all of the 12 scenarios compared to the corresponding differences of635

ΔRMSE7. The superiorities of the MO schemes or the ML schemes depend on the noise636

levels at both scales. Specifically, the performance of the MO schemes is slightly better637

than that of the ML scheme when n5 > n7, i.e. for the combinations of n5 = 2.0 and638

n7 = 1.0, n5 = 3.0 and n7 = 1.0, and n5 = 3.0 and n7 = 2.0. This indicates that the MO639

schemes are better choices than the ML scheme when fusing much noisier precipitation640

data at a coarser resolution with less noisy data at a finer resolution. When n5 ≤ n7,641

i.e., when the precipitation data at the finer resolution is noisier than that at the coarser642

resolution, the performances of the MO schemes are slightly worse than that of the ML643

scheme. For example, the lower and the upper quartiles and the medians of ΔRMSE5 of644

the MO schemes are smaller than those of ΔRMSE5 of the ML scheme for the scenarios645

of n5=n7=1.0, 2.0 and 3.0, n5 = 1.0 and n7 = 2.0, n5 = 1.0 and n7 = 4.0, n5 = 2.0 and646

n7 = 3.0, n5 = 2.0 and n7 = 4.0, and n5 = 3.0 and n7 = 4.0. But most of the differences647

are very small or negligible. Since the fused precipitation data at the coarser resolution648

with the ML scale are already quite good as shown in the work of Wang et al. [Wang649

et al., 2011], the smaller values of ΔRMSE5 with the MO scheme than those with the650

ML scheme are not a cause for concern. Among the three MO schemes, the #1 and #2651

MO schemes perform very closely. This once again shows that the objective functions of652

#1 MO scheme are sufficient enough and there is no need to add the likelihood function.653
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The #3 MO scheme is slightly better than the #1 and the #2 MO schemes for most of654

scenarios.655

On the other hand, the MO schemes perform much better than the ML scheme on656

improving the magnitude of the fused precipitation data at the finer resolution. As shown657

in Figure 6, the lower and the upper quartiles, the means and medians of the ΔRMSE7 of658

the MO schemes are clearly higher than the corresponding counterparts of the ML scheme659

for all of the 12 scenarios. The differences between ΔRMSE7 of the MO schemes and660

ΔRMSE7 of the ML scheme are also examined using the Kolmogorov-Smirnov test (at 1%661

significant level) similar to the correlation cases shown in Figure 5. Again the test results662

indicate that all of the differences are statistically significant. This implies that the MO663

schemes are significantly superior to the ML scheme in terms of improving the magnitudes664

of the fused precipitation at the finer spatial resolution using the MKS algorithm. Among665

the three MO schemes, the #1 and the #2 MO schemes behave similarly while the #3666

MO scheme also obviously better than the #1 and #2 MO schemes because of its higher667

values of the lower and the upper quartiles, the mean and the median.668

Figure 7 shows a precipitation event before (i.e., X−
5 and X−

7 ) and after (i.e., X+
5 and669

X+
7 ) the precipitation data fusion using the MKS algorithm with the #3 MO scheme. In670

the figure, the synthetically generated noisy precipitation fields (X−
5 and X−

7 ) are for the671

precipitation event at 09Z 09/22/2003 with n5 = 2.0 and n7 = 2.0. The true precipitation672

image of this event at scale 7 is shown in Figure 2. Comparing the precipitation field in673

Figure 1 with X−
5 and X−

7 in Figure 7, one can see clearly that the spatial pattern of the674

true precipitation field has been heavily contaminated in the synthetic precipitation fields675

at both scales 5 and 7. After the data fusion using the MKS algorithm with the #3 MO676
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scheme, the original spatial pattern has been mostly restored at both scales. However,677

the fused precipitation data at scale 7 have lost some details at scale 7. This is a common678

drawback of improving precipitation data of finer resolution with precipitation data of679

coarser resolution. It also partially comes from one of the constraints of the MO schemes,680

i.e. the one shown in equation 6. A relaxation of equation 6 may relieve the loosing of681

details at the finer resolution.682

5. Conclusions

This paper presents a general multi-objective (MO) parameter estimation scheme for683

the Multiscale Kalman Smoother (MKS) algorithm used in precipitation data fusion.684

Three approaches have been introduced with it to avoid over-smoothing of precipitation685

data. Formulations for this MO parameter estimation scheme are established based on686

the understanding of the objectives for the multiscale precipitation data fusion. The687

objective functions of each specific MO scheme have clear physical meanings that are688

related to precipitation data. This helps to make fused precipitation data to meet the689

expectations at multiscale scales. A Monte Carlo experiments have been conducted to690

reveal the limitations of the maximum likelihood (ML) scheme for the multiscale precipi-691

tation data fusion. The Monte Carlo experiment study justifies the rationale to develop692

the multi-objective parameter (MO) estimation scheme, which significantly enhances the693

performance of the Multiscale Kalman Smoother at the finer resolutions. The proposed694

multi- objective parameter estimation scheme has been extensively evaluated against the695

conventional maximum likelihood scheme (ML) over 2246 precipitation events in 2003696

with regard to improving the spatial patterns and the magnitudes of the precipitation697

data based on the results of 12 scenario experiments.698
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Studies in this paper can be summarized through two aspects. First, the limitations of699

the maximum likelihood scheme for estimating the parameters of the Multiscale Kalman700

Smoother algorithm have been revealed for applications in the real world precipitation701

data fusion. This scheme does not work well at finer resolutions even though it is effective702

at coarser resolutions. At the finer resolution, it is possible that only limited improvements703

can be achieved on the fused precipitation data in their spatial patterns and magnitudes704

using the Kalman Smoother algorithm and the maximum likelihood scheme. The reasons705

are due to the combinations that (1) the assumptions made in the ML scheme are not706

always met, and (2) local optimal instead of global optimal are obtained. In order to707

improve the performance at the finer resolutions, we developed a multi-objective (MO)708

parameter estimation scheme for the Multiscale Kalman Smoother algorithm. In the709

scheme, we formulated two core objective functions (equation 5 and 6) to simultaneously710

improve the spatial patterns and the magnitudes of the fused precipitation data at multiple711

scales. Three different approaches have been investigated with the MO scheme to reduce712

over-smoothing of precipitation details at the finer resolution.713

Comparisons between our new MO schemes and the ML scheme over a large number714

of precipitation events show that the proposed MO schemes have significantly better715

performances on improving the qualities of the fused precipitation data at the finer spatial716

resolution. The superiority of the MO schemes is even higher than that of the ML scheme717

when the precipitation data at the finer spatial resolutions are much noisier than the718

precipitation data at the coarser spatial resolutions. At the coarser spatial resolution, if719

the precipitation data are noisier than the precipitation data at the finer resolution, the720

new MO schemes also perform better than or comparable to that of the ML scheme on721
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improving the spatial patterns and the magnitudes of precipitation data. Among the three722

approaches related to the MO schemes, the #1 and the #2 approaches work very similarly723

at both spatial scales. This means that the likelihood function (i.e., equation 4) could be724

mostly represented by equations 7 - 8. The #3 approach results in better performance725

of the MKS algorithm than those of the #1 and #2 approaches. This means that the726

objective functions of the information entropy could bring in more useful information to727

fused precipitation data than the two objective functions of maximization (i.e., equation728

7 and 8). The #3 MO scheme is a better choice than the #1 MO scheme only if the729

computational resources is not limited. Otherwise, the #1 MO scheme is a good choice.730

Second, our numerical results have shown that the MO scheme can effectively represent731

the main features characterized by the ML scheme for the fused precipitation data at finer732

resolution. In the results of section 4.2, the #2 MO scheme does not show advantages to733

the #1 MO scheme for most cases. The advantages are negligible if any. The #3 MO734

scheme over-performs the #2 MO scheme generally. This implies that the two objective735

functions of the information entropy may represent even more information than the log-736

likelihood function. Thus, results obtained from the #3 MO scheme can be considered to737

have similar or even more strengths than those with the ML scheme.738

In summary, the multi-objective (MO) parameter estimation scheme, referred here as a739

general term to include the three different individual approaches, i.e., the #1, #2, and #3740

MO schemes, is effective for the Multiscale Kalman Smoother algorithm in fusing precipi-741

tation data, especially for deriving precipitation data products at finer spatial resolutions742

where large improvements are achieved compared to the ML scheme. On the other hand,743

the MO scheme takes longer computational time due to its multi-objective optimization744
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process. If the fused precipitation data products are desired at coarser spatial resolutions,745

the maximum likelihood (ML) scheme is recommended. But if the fused precipitation746

data are desired at finer spatial resolutions, the multi-objective (MO) parameter esti-747

mation scheme is highly recommended due to its much better performances at the finer748

spatial resolutions while its performances at the coarse resolutions are also very good.749

The concepts and ideas of our MO schemes in combining with the MKS algorithm are750

general, and thus can also be applied, in combination, to other approaches as well.751
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Figure 1. An example of multiscale tree: a two-dimensional multiscale tree with three spatial

scales. For node t at scale 1, tγ̄ represents its parent node and tαn (n = 1, 2, 3, 4) represents its

child nodes. Without a parent, the node at scale 0 (i.e., the coarsest resolution) is called a root

node; without any child nodes, the nodes at scale 2 (i.e., the finest resolution) are called leaf

node.

Figure 2. Map of experiment domain. Gray mesh represents 32× 32 grids at 1/8◦ resolution.

This map illustrates the NEXRAD MPE precipitation data at 09Z 09/22/2003, which are used

as the true data in the Monte Carlo experiment in section 4.2. The unit of precipitation data is

mm/hr.

Figure 3. Boxplots of the correlation and RMSE between the true and the synthetic precip-

itation data in 2003. The horizontal axes of subplots Corr−5 and RMSE−
5 are the noise levels

at scale 5, i.e. x5; the horizontal axes of subplots Corr−7 and RMSE−
7 are noise level at scale 7,

i.e. x7. For each box, the bottom and the top represent the lower (25th) quartile and the upper

(75th) quartile, the lower and the upper whiskers represent 1.5 IQR (interquartile range) of the

lower quartile and 1.5 IQR of the upper quartile, and the black dot represents the mean of Corr

or RMSE.

Figure 4. Scatter plots of log-likelihood and Corr+5 , log-likelihood and Corr+7 , log-likelihood

and RMSE+
5 , and log-likelihood and RMSE+

7 . The horizontal axes of all subplots are log-

likelihood.
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Figure 5. Boxplots of ΔCorr5 and ΔCorr7 computed after the multiscale precipitation data

fusion using the MKS algorithm with the ML scheme (in black color) and the MO schemes

(in red, green, and blue colors) for the 12 scenarios. In the labels of the horizontal axes of all

subplots, C denotes ΔCorr and the supper scripts 0, 1, 2, and 3 denotes the ML scheme and the

MO schemes. The title of each subplot describes the combination of noise levels at scale 5 and

scale 7 of the scenario. Descriptions of symbols are the same as those in Figure 3.

Figure 6. Boxplots of ΔRMSE5 and ΔRMSE7 computed after the multiscale precipitation

data fusion using the MKS algorithm with the ML scheme and the MO schemes for the 12

scenarios. The descriptions of labels and symbols are the same as those in Figure 5.

Figure 7. Example of multiscale precipitation data fusion using the MKS algorithm with

the MO scheme (n5 = 2.0 and n7 = 2.0) at 09Z 09/22/2003. X−
5 and X+

5 denote synthetic

precipitation data and fused precipitation data at 1/8◦ resolution (scale 5). X−
7 and X+

7 denote

synthetic precipitation data and fused precipitation data at 1/32◦ resolution (scale 7).
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Figure 5: Boxplots of ΔCorr5 and ΔCorr7 computed after the multiscale precipita-
tion data fusion using the MKS algorithm with the ML scheme (in black color) and
the MO schemes (in red, green, and blue colors) for the 12 scenarios. In the labels
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Figure 6: Boxplots of ΔRMSE5 and ΔRMSE7 computed after the multiscale pre-
cipitation data fusion using the MKS algorithm with the ML scheme and the MO
schemes for the 12 scenarios. The descriptions of labels and symbols are the same
as those in Figure 5.



Figure 7: Example of multiscale precipitation data fusion using the MKS algorithm
with the MO scheme (n5 = 2.0 and n7 = 2.0) at 09Z 09/22/2003. X−

5 and X+
5

denote synthetic precipitation data and fused precipitation data at 1/8◦ resolution
(scale 5). X−

7 and X+
7 denote synthetic precipitation data and fused precipitation

data at 1/32◦ resolution (scale 7).


