1,167 research outputs found

    Structural deformation of shale pores in the fold-thrust belt: The Wufeng-Longmaxi shale in the Anchang Syncline of Central Yangtze Block

    Get PDF
    The gas-rich Wufeng-Longmaxi shale has been intensely deformed within the fold-thrust belt of the Yangtze Block. To better understand the impact of structural deformation on the shale pore system, this paper systematically investigated the matrix components, porosity and pore structures in core samples from theWufeng-Longmaxi shale, newly collected from various structural domains in the first commercial shale gas field of the Central Yangtze Block, the Anchang Syncline. The shale porosity generally showed a positive relationship with total organic carbon content. Nevertheless, even at a constant total organic carbon content, the shale porosity decreased from the syncline limb to the syncline hinge zone and with a decreasing interlimb angle in the syncline hinge zone, which aligned with the structural deformation strain during folding. The artificial axial compression of shale samples also confirmed that the decrease in shale porosity was stronger at an elevated axial compression stress and was relatively higher in samples with higher total organic carbon content. The organic pore size decreased with higher structural deformation strain, but the aspect ratio of the pore shape increased. Even quartz failed to resist the effective stress under the intensive structural deformation, changing the correlation between porosity and quartz from positive to negative. In contrast, pore spaces generated by the slipping between clay flakes under intensive deformation accounted for a positive relationship between clay content and bulk porosity. Considering the shale porosity reduction caused by the intensive structural deformation of shale pores, the Wufeng-Longmaxi shale, that is rich in fracture networks between roof and floor layers, may still be an excellent exploration target in the fold-thrust belt of the Yangtze Block.Cited as: Guo, X., Liu, R., Xu, S., Feng, B., Wen, T., Zhang, T. Structural deformation of shale pores in the fold-thrust belt: The Wufeng-Longmaxi shale in the Anchang Syncline of Central Yangtze Block. Advances in Geo-Energy Research, 2022, 6(6): 515-530. https://doi.org/10.46690/ager.2022.06.0

    3-Ethyl-4-[(E)-2-methyl­benzyl­idene­amino]-1H-1,2,4-triazole-5(4H)-thione

    Get PDF
    Crystals of the title compound, C12H14N4S, were obtained from a condensation reaction of 4-amino-3-ethyl-1H-1,2,4-triazole-5(4H)-thione and 2-methyl­benzaldehyde. In the mol­ecular structure, there is a short N=C double bond [1.255 (2) Å], and the benzene and triazole rings are located on opposite sites of this double bond. The two rings are approximately parallel to each other, the dihedral angle being 1.75 (11)°. A partially overlapped arrangement is observed between the nearly parallel triazole and benzene rings of adjacent mol­ecules; the perpendicular distance of the centroid of the triazole ring from the benzene ring is 3.482 Å, indicating the existence of π–π stacking in the crystal structure

    (E)-2-Acetyl­pyrazine 4-nitro­phenyl­hydrazone

    Get PDF
    In the title compound, C12H11N5O2, the mol­ecule adopts an E configuration, with the benzene and pyrazine rings located on opposite sides of the N=C double bond. The face-to-face separations of 3.413 (14) and 3.430 (8) Å, respectively between parallel benzene rings and between pyrazine rings indicate the existence of π–π stacking between adjacent mol­ecules. The crystal structure also contains N—H⋯N and C—H⋯O hydrogen bonding

    Study on natural characteristics of fiber metal laminates thin plates under cantilever boundary

    Get PDF
    Through the combination of theory and experiment, the natural characteristics of the fiber metal laminates thin plates under cantilever boundary are analyzed and verified. Based on the mechanics of composites and classical laminated plate theory, the theoretical model is established. The orthogonal polynomial method and the energy method are used to solve the natural characteristics. Meanwhile the calculation process is proposed. And then, the natural characteristics of a TA2/TC500 fiber metal laminates thin plate are tested. It is found that comparing the calculation results of the frequencies with the test ones, the errors are within the range of 3.4 % to 4.5 %, the trends of modal shapes are consistent as well, thus the effectiveness of above method has been verified

    Bis[3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato-κ3 O,N,N′]copper(II) tetra­hydrate

    Get PDF
    In the title complex, [Cu(C11H9ClN3O2)2]·4H2O, the CuII atom is in a distorted octa­hedral coordination environment, coordinated by four N atoms and two O atoms from two tridentate 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinate ligands. The mol­ecules are linked via inter­molecular O—H⋯O hydrogen bonds involving water mol­ecules to form extended chains along [010], and there are short Cl⋯Cl contacts [3.153 (4) Å]

    From Indeterminacy to Determinacy: Augmenting Logical Reasoning Capabilities with Large Language Models

    Full text link
    Recent advances in LLMs have revolutionized the landscape of reasoning tasks. To enhance the capabilities of LLMs to emulate human reasoning, prior works focus on modeling reasoning steps using specific thought structures like chains, trees, or graphs. However, LLM-based reasoning continues to encounter three challenges: 1) Selecting appropriate reasoning structures for various tasks; 2) Exploiting known conditions sufficiently and efficiently to deduce new insights; 3) Considering the impact of historical reasoning experience. To address these challenges, we propose DetermLR, a novel reasoning framework that formulates the reasoning process as a transformational journey from indeterminate premises to determinate ones. This process is marked by the incremental accumulation of determinate premises, making the conclusion progressively closer to clarity. DetermLR includes three essential components: 1) Premise identification: We categorize premises into two distinct types: determinate and indeterminate. This empowers LLMs to customize reasoning structures to match the specific task complexities. 2) Premise prioritization and exploration: We leverage quantitative measurements to assess the relevance of each premise to the target, prioritizing more relevant premises for exploring new insights. 3) Iterative process with reasoning memory: We introduce a reasoning memory module to automate storage and extraction of available premises and reasoning paths, preserving historical reasoning details for more accurate premise prioritization. Comprehensive experimental results show that DetermLR outperforms all baselines on four challenging logical reasoning tasks: LogiQA, ProofWriter, FOLIO, and LogicalDeduction. DetermLR can achieve better reasoning performance while requiring fewer visited states, highlighting its superior efficiency and effectiveness in tackling logical reasoning tasks.Comment: Code repo: https://github.com/XiaoMi/DetermL
    corecore