12 research outputs found

    Global simulations of monoterpene-derived peroxy radical fates and the distributions of highly oxygenated organic molecules (HOMs) and accretion products

    Get PDF
    We evaluate monoterpene-derived peroxy radical (MT-RO2) unimolecular autoxidation and self- and cross-reactions with other RO2 species in the GEOS-Chem global chemical transport model. The formation of associated highly oxygenated organic molecules (HOMs) and accretion products are tracked in competition with other bimolecular reactions. Autoxidation is the dominant fate up to 6-8 km for first-generation MT-RO2, which can undergo unimolecular H shifts. Reaction with NO can be a more common fate for H-shift rate constants < 0.1 s(-1) or at altitudes higher than 8 km due to the imposed Arrhenius temperature dependence of unimolecular H shifts. For MT-derived HOM-RO2, generated by multistep autoxidation of first-generation MT-RO2, reaction with other RO2 species is predicted to be the major fate throughout most of the boreal and tropical forest regions, whereas reaction with NO dominates in the temperate and subtropical forests of the Northern Hemisphere. The newly added reactions result in an approximate 4 % global average decrease in HO2 and RO2, mainly due to faster self-/cross-reactions of MT-RO2, but the impact upon HO2, OH, and NOx abundances is only important in the planetary boundary layer (PBL) over portions of tropical forests. Predicted HOM concentrations in MT-rich regions and seasons can exceed total organic aerosol predicted by the standard version of the GEOS-Chem model depending on the parameters used. Comparisons to observations reveal that large uncertainties remain for key reaction parameters and processes, especially with respect to the photochemical lifetime and volatility of HOMs as well as the rates and branching of associated RO2 accretion products. Further observations and laboratory studies related to MT-RO2-derived HOMs and gas-phase RO2 accretion product formation kinetics - especially their atmospheric fate, such as gas-particle partitioning, multiphase chemistry, and net secondary organic aerosol formation - are needed.Peer reviewe

    Lubrication Performance and Mechanism of Electrostatically Charged Alcohol Aqueous Solvents with Aluminum–Steel Contact

    No full text
    Alcohol aqueous solvents were prepared by individually adding n-propanol, isopropanol, 1,2-propanediol, and glycerol to deionized water for use as lubricants for the electrostatic minimum quantity lubrication (EMQL) machining of aluminum alloys. The tribological characteristics of those formulated alcohol solvents under EMQL were assessed using a four-ball configuration with an aluminum–steel contact, and their static chemisorption on the aluminum surfaces was investigated. It was found that the negatively charged alcohol lubricants (with charging voltages of −5 kV) resulted in 31% and 15% reductions in the coefficient of friction (COF) and wear scar diameter (WSD), respectively, in comparison with those generated using neutral alcohol lubricants. During the EMQL, static charges could help dissociate the alcohol molecules, generating more negative ions, which accelerated the chemisorption of those alcohol molecules on the aluminum surfaces and thereby yielded a relatively homogeneous-reacted film consisting of more carbon and oxygen. This lubricating film improved the interfacial lubrication, thus producing a better tribological performance for the aluminum alloys. The results achieved from this study will offer a new way to develop high-performance lubrication technologies for machining aluminum alloys

    Effects of the Electric Double Layer Characteristic and Electroosmotic Regulation on the Tribological Performance of Water-Based Cutting Fluids

    No full text
    The electroosmosis effect is a complement to the theory of the traditional capillary penetration of cutting fluid. In this study, based on the electric double layer (EDL) characteristics at friction material/solution interfaces, the influences of additives and their concentrations on capillary electroosmosis were investigated, and a water-based cutting-fluid formulation with consideration to the electroosmosis effect was developed. The lubrication performance levels of cutting fluids were investigated by a four-ball tribometer. The results show that the EDL is compressed with increasing ionic concentration, which suppresses the electroosmotic flow (EOF). The specific adsorption of OH− ions or the dissociation of surface groups is promoted as pH rises, increasing the absolute zeta potential and EOF. The polyethylene glycol (PEG) additive adsorbed to the friction material surface can keep the shear plane away from the solid surface, reducing the absolute zeta potential and EOF. The electroosmotic performance of cutting fluid can be improved by compounding additives with different electroosmotic performance functions. Furthermore, electroosmotic regulators can adjust the zeta potential by the electrostatic adsorption mechanism, affecting the penetration performance of cutting fluid in the capillary zone at the friction interface. The improvement in the tribological performance of cutting fluid developed with consideration given to the electroosmosis effect is attributed to the enhancement of the penetration ability of the cutting fluid and the formation of more abundant amounts of lubricating film at the interface

    Effects of an Electrical Double Layer and Tribo-Induced Electric Field on the Penetration and Lubrication of Water-Based Lubricants

    No full text
    Understanding the effects of electrical double layers (EDL) and tribo-induced electric fields on the electroosmotic behaviors of lubricants is important for developing high-performance water-based lubricants. In this study, EDL conductivities of aqueous lubricants containing a surfactant of 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) or cetyltrimethylammonium bromide (CTAB) were analyzed. The interfacial zeta potentials of the synthesized lubricants and Al2O3 ceramic-alloy steel contacts were measured, and frictional potentials of ceramic and steel surfaces were determined using a modified ball-on-disc configuration. The distribution characteristics of the tribo-induced electric field of the ceramic-steel sliding contact were numerically analyzed. The electroosmotic behaviors of the lubricants were investigated using a four-ball configuration. It was found that an EDL and tribo-induced electric field was a crucial enabler in stimulating the electroosmosis of lubricants. Through altering EDL structures, CHAPS enhanced the electroosmosis and penetration of the water-based lubricant, thus resulting in improved lubrication

    Plastic waste discharge to the global ocean constrained by seawater observations

    No full text
    Marine plastic pollution poses a potential threat to the ecosystem, but the sources and their magnitudes remain largely unclear. Existing bottom-up emission inventories vary among studies for two to three orders of magnitudes (OMs). Here, we adopt a top-down approach that uses observed dataset of sea surface plastic concentrations and an ensemble of ocean transport models to reduce the uncertainty of global plastic discharge. The optimal estimation of plastic emissions in this study varies about 1.5 OMs: 0.70 (0.13–3.8 as a 95% confidence interval) million metric tons yr−1 at the present day. We find that the variability of surface plastic abundance caused by different emission inventories is higher than that caused by model parameters. We suggest that more accurate emission inventories, more data for the abundance in the seawater and other compartments, and more accurate model parameters are required to further reduce the uncertainty of our estimate.</p

    Plastic waste discharge to the global ocean constrained by seawater observations

    No full text
    Marine plastic pollution poses a potential threat to the ecosystem, but the sources and their magnitudes remain largely unclear. Existing bottom-up emission inventories vary among studies for two to three orders of magnitudes (OMs). Here, we adopt a top-down approach that uses observed dataset of sea surface plastic concentrations and an ensemble of ocean transport models to reduce the uncertainty of global plastic discharge. The optimal estimation of plastic emissions in this study varies about 1.5 OMs: 0.70 (0.13–3.8 as a 95% confidence interval) million metric tons yr−1 at the present day. We find that the variability of surface plastic abundance caused by different emission inventories is higher than that caused by model parameters. We suggest that more accurate emission inventories, more data for the abundance in the seawater and other compartments, and more accurate model parameters are required to further reduce the uncertainty of our estimate.Coastal Engineerin

    Author Correction: Plastic waste discharge to the global ocean constrained by seawater observations

    No full text
    Correction to: Nature Communications, published online 13 March 2023 The original version of this Article contained an error in Fig. 2, in which c was incorrectly described as “middle scenario” where it should have been described as “low scenario”. The correct version of Fig. 2 is: (Figure presented.) which replaces the previous incorrect version: (Figure presented.) This has been corrected in both the PDF and HTML versions of the Article.Coastal Engineerin

    pH-sensitive and biodegradable charge-transfer nanocomplex for second near-infrared photoacoustic tumor imaging

    No full text
    The emerging photoacoustic imaging (PAI), especially in the NIR window, offers reliable sensing for deep-penetration and high-resolution closing to clinical requirements. However, the contrast agents that are capable of specifically responding to the intricate biological environments, more importantly, indicate promising biodegradability and biocompatibility are still limited. Herein, we introduce a new class of pH-sensitive organic PA contrast agent working in the second near-infrared window (NIR-II, 960 - 1700 nm), which is derived from the self-assembled charge-transfer nanocomplex (CTN) by 3, 3’, 5, 5’-tetramethylbenzidine (TMB) and its dication structure (TMB++). Such unique NIR-II-responsive CTN can specifically respond to pH change in the physiological range, allows noninvasive and sensitive visualization of the tumor acidic microenvironment (e.g. at pH 5) in mice with higher signal-to-noise ratio (SNR). Moreover, this organic CTN demonstrates the biodegradable feature in physiological condition (e.g. at pH 7.4), which provides the great biosafety without the concern of nanoparticles accumulation in vivo. These results clearly show the potential of TMB/TMB++-based CTN as a promising pH-activatable and biodegradable molecular probe for specific tumor photoacoustic imaging in the NIR-II region.MOE (Min. of Education, S’pore)NMRC (Natl Medical Research Council, S’pore)Accepted versio
    corecore