896 research outputs found

    Pozzolanic and mechanical properties of Date Palm Seed Ash (Dpsa) concrete

    Get PDF
    This paper presents the findings of a research work conducted on how to improve the mechanical properties of concrete using Date Palm Seed Ash (DPSA) as partial replacement of cement. The DPSA used was obtained by controlled burning of date palm seed in a kiln at a maximum temperature of 630oC for eight hours and air cooled afterwards. The ash obtained was sieved through 75μm sieve and its oxide composition analysed using X-ray fluorescence (XRF) procedures. DoE method of mix design was used to produce concrete ingredients for grade 30N/mm2 giving a water-cement ratio of 0.53. The effect of partial replacement of cement with DPSA on cement paste and concrete using 0, 2.5, 5, 7.5, 10, 15 and 20% DPSA was investigated through consistency and setting times tests, workability test, compressive strength test (at 7, 21, 28 and 56 days curing duration), pozzolanic activity index evaluation and water absorption test. Results show that DPSA has high silicon dioxide (45.50%), aluminum oxide (20.75%) and Iron oxide (7.25%). Findings indicate that the consistency and setting times of cement-DPSA paste increased with increase in the replacement of cement with DPSA. The workability of DPSA concrete decreased with increase in cement replacement. Compressive strength test results show that cement can be replaced with DPSA up to 10% as the compressive strength at 10% replacement is 31.5N/mm2 as against the 31N/mm2 of the normal concrete, at 56 days. The pozzolanic activity index result also show that DPSA concrete meets up the minimum requirement of 75% specified by ASTM C618-15. Also, the water absorption capacity of DPSA concrete at the highest replacement (20%) is 11% less than that at 0%. Keywords: Cement, Compressive strength, Concrete, Date palm seed ash, Partial replacement, Pozzolan

    Formation of the seed black holes: a role of quark nuggets?

    Full text link
    Strange quark nuggets (SQNs) could be the relics of the cosmological QCD phase transition, and they could very likely be the candidate of cold quark matter if survived the cooling of the later Universe, although the formation and evolution of these SQNs depend on the physical state of the hot QGP (quark-gluon plasma) phase and the state of cold quark matter. We reconsider the possibility of SQNs as cold dark matter, and find that the formation of black holes in primordial halos could be significantly different from the standard scenario. In a primordial halo, the collision between gas and SQNs could be frequent enough, and thus the viscosity acting on each SQN would decrease its angular momentum and make it to sink into the center of the halo, as well as heat the gas. The SQNs with baryon numbers less than 103510^{35} could assemble in the center of the halo before the formation of primordial stars. A black hole could form by merger of these SQNs, and then its mass could quickly become about 103 M⊙10^3\ M_\odot or higher, by accreting the surrounding SQNs or gas. The black holes formed in this way could be the seeds for the supermassive black holes at redshift as high as z∼6z\sim 6.Comment: 15 page

    PVDF/TiO2 nanocomposites prepared by solution blow spinning: surface properties and their relation with S. Mutans adhesion

    Get PDF
    Thermoplastic nanocomposite materials with potential bactericide properties were prepared and their surface properties and adhesion to Streptococcus mutans, S. mutans, were characterized. Solution blow spinning was successfully used to prepare films with a fiber-like structure on the surface of nanocomposites based on Polyvinylidene fluoride, PVDF, filled with well dispersed TiO2 nanoparticles. PVDF/TiO2 nanocomposites were prepared varying the nanoparticles content (0%, 1%, 2%, 5% and 10% by weight). In order to understand the influence of the presence of TiO2 nanoparticles and the final surface properties on the adhesion of S. mutans to the materials, a deep characterization was carried out focusing on the morphology, roughness, surface free energy from contact angle measurements and cell adhesion by single cell force spectroscopy. It was observed that the uniform dispersion of the nanofiller arose from nanoparticles embedded in the polymer when fibers were created during the blow spinning process. TiO2 content influenced the topography of the films probably due to a direct effect on the solvent evaporation rate. Although this factor greatly conditioned the roughness of the samples and therefore the surface free energy, S. mutant adhesion on the substrates under study was concluded to be more dependent on the specific interactions with the surface polar groups of the material.Authors gratefully acknowledge financial support of Ministerio de Economía y Competitividad (grant number MAT2014-59116-C2). Furthermore, the authors greatly appreciate The Ministerio de Educación Cultura y Deporte of Spain in the frame of "Modalidad A del Programa de estancias de movilidad de profesores e investigadores en centros extranjeros de enseñanza superior e investigación" for granting the research proposal of Javier González-Benito (Ref.: PR2015-00018) to do short stay at the National Institute of Standards and Technology, NIST (USA)

    Superconducting fluctuations and the Nernst effect: A diagrammatic approach

    Full text link
    We calculate the contribution of superconducting fluctuations above the critical temperature TcT_c to the transverse thermoelectric response αxy\alpha_{xy}, the quantity central to the analysis of the Nernst effect. The calculation is carried out within the microscopic picture of BCS, and to linear order in magnetic field. We find that as T→TcT \to T_c, the dominant contribution to αxy\alpha_{xy} arises from the Aslamazov-Larkin diagrams, and is equal to the result previously obtained from a stochastic time-dependent Ginzburg-Landau equation [Ussishkin, Sondhi, and Huse, arXiv:cond-mat/0204484]. We present an argument which establishes this correspondence for the heat current. Other microscopic contributions, which generalize the Maki-Thompson and density of states terms for the conductivity, are less divergent as T→TcT \to T_c.Comment: 11 pages, 5 figure

    New Lump-like Structures in Scalar-field Models

    Full text link
    In this work we investigate lump-like solutions in models described by a single real scalar field. We start considering non-topological solutions with the usual lump-like form, and then we study other models, where the bell-shape profile may have varying amplitude and width, or develop a flat plateau at its top, or even induce a lump on top of another lump. We suggest possible applications where these exotic solutions might be used in several distinct branches of physics.Comment: REvTex4, twocolumn, 10 pages, 9 figures; new reference added, to appear in EPJ

    Impurity-induced transition and impurity-enhanced thermopower in the thermoelectric oxide NaCo_{2-x}Cu_x$O_4

    Full text link
    Various physical quantities are measured and analysed for the Cu-substituted thermoelectric oxide NaCo_{2-x}Cu_xO_4. As was previously known, the substituted Cu enhances the thermoelectric power, while it does not increase the resistivity significantly. The susceptibility and the electron specific-heat are substantially decreased with increasing x, which implies that the substituted Cu decreases the effective-mass enhancement. Through a quantitative comparison with the heavy fermion compounds and the valence fluctuation systems, we have found that the Cu substitution effectively increases the coupling between the conduction electron and the magnetic fluctuation. The Cu substitution induces a phase transition at 22 K that is very similar to a spin-density-wave transition.Comment: 8 pages, 7 figures, submitted to Phys. Rev.

    Formal Verification of Tokeneer Behaviours Modelled in fUML Using CSP

    Get PDF
    Much research work has been done on formalizing UML diagrams, but less has focused on using this formalization to analyze the dynamic behaviours between formalized components. In this paper we propose using a subset of fUML (Foundational Subset for Executable UML) as a semi-formal language, and formalizing it to the process algebraic specification language CSP, to make use of FDR as a model checker. Our formalization includes modelling the asynchronous communication framework used within fUML. This allows different interpretations of the communications model to be evaluated. To illustrate the approach, we use the modelling of the Tokeneer ID Station specifications into fUML, and formalize them in CSP to check if the model is deadlock free

    Critical behavior of the frustrated antiferromagnetic six-state clock model on a triangular lattice

    Full text link
    We study the anti-ferromagnetic six-state clock model with nearest neighbor interactions on a triangular lattice with extensive Monte-Carlo simulations. We find clear indications of two phase transitions at two different temperatures: Below TIT_I a chirality order sets in and by a thorough finite size scaling analysis of the specific heat and the chirality correlation length we show that this transition is in the Ising universality class (with a non-vanishing chirality order parameter below TIT_I). At TKT(<TI)T_{KT}(<T_I) the spin-spin correlation length as well as the spin susceptibility diverges according to a Kosterlitz-Thouless (KT) form and spin correlations decay algebraically below TKTT_{KT}. We compare our results to recent x-ray diffraction experiments on the orientational ordering of CF3_3Br monolayers physisorbed on graphite. We argue that the six-state clock model describes the universal feature of the phase transition in the experimental system and that the orientational ordering belongs to the KT universality class.Comment: 8 pages, 9 figure

    Size-resolved and bulk activation properties of aerosols in the North China Plain

    Get PDF
    Size-resolved and bulk activation properties of aerosols were measured at a regional/suburban site in the North China Plain (NCP), which is occasionally heavily polluted by anthropogenic aerosol particles and gases. A Cloud Condensation Nuclei (CCN) closure study is conducted with bulk CCN number concentration (NCCN) and calculated CCN number concentration based on the aerosol number size distribution and size-resolved activation properties. The observed CCN number concentration (NCCN-obs) are higher than those observed in other locations than China, with average NCCN-obs of roughly 2000, 3000, 6000, 10 000 and 13 000 cm−3 at supersaturations of 0.056, 0.083, 0.17, 0.35 and 0.70%, respectively. An inferred critical dry diameter (Dm) is calculated based on the NCCN-obs and aerosol number size distribution assuming homogeneous chemical composition. The inferred cut-off diameters are in the ranges of 190–280, 160–260, 95–180, 65–120 and 50–100 nm at supersaturations of 0.056, 0.083, 0.17, 0.35 and 0.7%, with their mean values 230.1, 198.4, 128.4, 86.4 and 69.2 nm, respectively. Size-resolved activation measurements show that most of the 300 nm particles are activated at the investigated supersaturations, while almost no particles of 30 nm are activated even at the highest supersaturation of 0.72%. The activation ratio increases with increasing supersaturation and particle size. The slopes of the activation curves for ambient aerosols are not as steep as those observed in calibrations with ammonium sulfate suggesting that the observed aerosols is an external mixture of more hygroscopic and hydrophobic particles. The calculated CCN number concentrations (NCCN-calc) based on the size-resolved activation ratio and aerosol number size distribution correlate well with the NCCN-obs, and show an average overestimation of 19%. Sensitivity studies of the CCN closure show that the NCCN at each supersaturation is well predicted with the campaign average of size-resolved activation curves. These results indicate that the aerosol number size distribution is critical in the prediction of possible CCN. The CCN number concentration can be reliably estimated using time-averaged, size-resolved activation efficiencies without accounting for the temporal variations

    Sexual violence against women and children in Chinese societies

    Get PDF
    This article provides a comprehensive overview of the reported patterns of sexual violence against women and children in China. It reviews the prevalence of and risk factors for various types of sexual violence and discusses community knowledge and perceptions of these violent acts. It also critically examines three major problems of sexual violence research in China. First, the diversity of findings and study methods reported by surveys and criminal reports reflects the problems in obtaining accurate figures on the scope of the problem. Second, precautions must be taken in reading studies on Chinese culture-specific risk factors for domestic violence. Third, the study of culture-specific factors should not focus solely on cultural factors in a vacuum but rather, should examine traditional culture in the context of modern societies and consensus international standards of human rights. Recommendations for future research are also discussed. © 2009 Sage Publications.postprin
    • …
    corecore