31,445 research outputs found

    Electrospinning of poly(ethylene-co-vinyl alcohol) nanofibres encapsulated with Ag nanoparticles for skin wound healing

    Get PDF
    Copyright © 2011 Chao Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Skin wound healing is an urgent problem in clinics and military activities. Although significant advances have been made in its treatment, there are several challenges associated with traditional methods, for example, limited donor skin tissue for transplantation and inflammation during long-term healing time. To address these challenges, in this study we present a method to fabricate Poly(ethylene-co-vinyl alcohol) (EVOH) nanofibres encapsulated with Ag nanoparticle using electrospinning technique. The fibres were fabricated with controlled diameters (59nm-3m) by regulating three main parameters, that is, EVOH solution concentration, the electric voltage, and the distance between the injection needle tip (high-voltage point) and the fibre collector. Ag was added to the nanofibres to offer long-term anti-inflammation effect by slow release of Ag nanoparticles through gradual degradation of EVOH nanofibre. The method developed here could lead to new dressing materials for treatment of skin wounds. © 2011 Chao Xu et al.The work was partially supported by the National Natural Science Foundation of China (nos. 10825210, 10872157, and 31050110125) and the National 111 Project of China (no. B06024)

    A spectroscopic study of the cycling transition 4s[3/2]_2-4p[5/2]_3 at 811.8 nm in Ar-39: Hyperfine structure and isotope shift

    Get PDF
    Doppler-free saturated absorption spectroscopy is performed on an enriched radioactive Ar-39 sample. The spectrum of the 3s^2 3p^5 4s [3/2]_2 - 3s^2 3p^5 4p [5/2]_3 cycling transition at 811.8 nm is recorded, and its isotope shift between Ar-39 and Ar-40 is derived. The hyperfine coupling constants A and B for both the 4s [3/2]_2 and 4p [5/2]_3 energy levels in Ar-39 are also determined. The results partially disagree with a recently published measurement of the same transition. Based on earlier measurements as well as the current work, the isotope shift and hyperfine structure of the corresponding transition in Ar-37 are also calculated. These spectroscopic data are essential for the realization of laser trapping and cooling of Ar-37 and Ar-39

    A Multifunctional Gelatin-Quaternary Ammonium Copolymer Exhibiting Superior Anionic Dye Adsorption for Efficient Emission Reduction in Leather Tanning Process

    Get PDF
    Leather wastewater is one of the most polluting industrial emissions. An in-situ, green, and innovative strategy that limits dye emissions is required to replace subsequent waste management. A novel cationic protein with a high quaternary ammonium degree was designed and synthesized. The results show that at concentrations ranging from 3 to 15 wt%, this cationic protein rapidly and completely adsorbs Direct Purple N and Acid Black 24 within 5 min. A remarkable efficiency in removing Acid Red 73, Acid Golden G, Acid Lake Blue A, Acid Green, and Acid Orange II, with >96% removal rates, was achieved. The cationic protein was most accurately represented by the pseudo-second-order kinetic model. Acid Orange II (2000 mg L-1) and 15 wt% cationic protein were used in an actual tanning process. The residual concentration of Acid Orange II in the wastewater was 23.1 mg L-1. These results reflect that the emission reduction targets have been effectively achieved

    The Integrated Sachs-Wolfe Effect in Time Varying Vacuum Model

    Full text link
    The integrated Sachs-Wolfe (ISW) effect is an important implication for dark energy. In this paper, we have calculated the power spectrum of the ISW effect in the time varying vacuum cosmological model, where the model parameter β=4.407\beta=4.407 is obtained by the observational constraint of the growth rate. It's found that the source of the ISW effect is not only affected by the different evolutions of the Hubble function H(a)H(a) and the dimensionless matter density Ωm(a)\Omega_m(a), but also by the different growth function D+(a)D_+(a), all of which are changed due to the presence of matter production term in the time varying vacuum model. However, the difference of the ISW effect in Λ(t)CDM\Lambda(t)\textmd{CDM} model and ΛCDM\Lambda \textmd{CDM} model is lessened to a certain extent due to the integration from the time of last scattering to the present. It's implied that the observations of the galaxies with high redshift are required to distinguish the two models

    Computing Adaptive Feature Weights with PSO to Improve Android Malware Detection

    Get PDF
    © 2017 Yanping Xu et al. Android malware detection is a complex and crucial issue. In this paper, we propose a malware detection model using a support vector machine (SVM) method based on feature weights that are computed by information gain (IG) and particle swarm optimization (PSO) algorithms. The IG weights are evaluated based on the relevance between features and class labels, and the PSO weights are adaptively calculated to result in the best fitness (the performance of the SVM classification model). Moreover, to overcome the defects of basic PSO, we propose a new adaptive inertia weight method called fitness-based and chaotic adaptive inertia weight-PSO (FCAIW-PSO) that improves on basic PSO and is based on the fitness and a chaotic term. The goal is to assign suitable weights to the features to ensure the best Android malware detection performance. The results of experiments indicate that the IG weights and PSO weights both improve the performance of SVM and that the performance of the PSO weights is better than that of the IG weights

    An interpretable deep learning method for bearing fault diagnosis

    Full text link
    Deep learning (DL) has gained popularity in recent years as an effective tool for classifying the current health and predicting the future of industrial equipment. However, most DL models have black-box components with an underlying structure that is too complex to be interpreted and explained to human users. This presents significant challenges when deploying these models for safety-critical maintenance tasks, where non-technical personnel often need to have complete trust in the recommendations these models give. To address these challenges, we utilize a convolutional neural network (CNN) with Gradient-weighted Class Activation Mapping (Grad-CAM) activation map visualizations to form an interpretable DL method for classifying bearing faults. After the model training process, we apply Grad-CAM to identify a training sample's feature importance and to form a library of diagnosis knowledge (or health library) containing training samples with annotated feature maps. During the model evaluation process, the proposed approach retrieves prediction basis samples from the health library according to the similarity of the feature importance. The proposed method can be easily applied to any CNN model without modifying the model architecture, and our experimental results show that this method can select prediction basis samples that are intuitively and physically meaningful, improving the model's trustworthiness for human users

    Functional interplay between NTP leaving group and base pair recognition during RNA polymerase II nucleotide incorporation revealed by methylene substitution.

    Get PDF
    RNA polymerase II (pol II) utilizes a complex interaction network to select and incorporate correct nucleoside triphosphate (NTP) substrates with high efficiency and fidelity. Our previous 'synthetic nucleic acid substitution' strategy has been successfully applied in dissecting the function of nucleic acid moieties in pol II transcription. However, how the triphosphate moiety of substrate influences the rate of P-O bond cleavage and formation during nucleotide incorporation is still unclear. Here, by employing β,γ-bridging atom-'substituted' NTPs, we elucidate how the methylene substitution in the pyrophosphate leaving group affects cognate and non-cognate nucleotide incorporation. Intriguingly, the effect of the β,γ-methylene substitution on the non-cognate UTP/dT scaffold (∼3-fold decrease in kpol) is significantly different from that of the cognate ATP/dT scaffold (∼130-fold decrease in kpol). Removal of the wobble hydrogen bonds in U:dT recovers a strong response to methylene substitution of UTP. Our kinetic and modeling studies are consistent with a unique altered transition state for bond formation and cleavage for UTP/dT incorporation compared with ATP/dT incorporation. Collectively, our data reveals the functional interplay between NTP triphosphate moiety and base pair hydrogen bonding recognition during nucleotide incorporation

    HerMES: The submillimeter spectral energy distributions of Herschel/SPIRE-detected galaxies

    Get PDF
    We present colours of sources detected with the Herschel/SPIRE instrument in deep extragalactic surveys of the Lockman Hole, Spitzer-FLS, and GOODS-N fields in three photometric bands at 250, 350 and 500 μm. We compare these with expectations from the literature and discuss associated uncertainties and biases in the SPIRE data. We identify a 500 μm flux limited selection of sources from the HerMES point source catalogue that appears free from neighbouring/blended sources in all three SPIRE bands. We compare the colours with redshift tracks of various contemporary models. Based on these spectral templates we show that regions corresponding to specific population types and redshifts can be identified better in colour-flux space. The redshift tracks as well as the colour-flux plots imply a majority of detected objects with redshifts at 1 < z < 3.5, somewhat depending on the group of model SEDs used. We also find that a population of sources with S_(250)/S_(350) < 0.8 at fluxes above 50 mJy as observed by SPIRE are not well represented by contemporary models and could consist of a mix of cold and lensed galaxies
    corecore