305 research outputs found

    Perceptual learning of binocular interactions.

    Get PDF
    This dissertation focuses on the mechanisms and implications of perceptual learning of binocular interactions. Perceptual learning is an important means of adapting to the changing environment, demonstrating the possibility of neural plasticity in adults and providing a powerful approach to investigate dynamic processes in the mature perceptual system. Most studies on perceptual learning have focused on learning mechanisms that target excitatory circuits. However, we recognize that the inhibitory circuits also play a critical role in cortical plasticity, as shown by growing evidence from neurophysiological studies, and that the inhibitory connection is more dynamic than the excitatory connection in adult visual cortex. Thus, our goal is to design a psychophysical method that exploits the contribution of the inhibitory circuits to perceptual learning. This in turn helps us to implement more efficient learning paradigms for visual training. Our study capitalizes on properties of the binocular visual system, a good system for exploring both excitatory and inhibitory mechanisms. We first measured local Sensory Eye Dominance (SED) and showed that excessive SED can impede stereopsis ability. To reduce SED, a typical perceptual training paradigm (Push-only protocol) would only stimulate the weak eye to target the excitatory network. In contrast, we designed a novel Push-Pull training protocol to target both the excitatory and inhibitory networks. By presenting binocular rivalry stimuli to both eyes, the push-pull protocol can excite the visual pathway of the weak eye (push), while inhibiting the visual pathway of the strong eye (pull). We found that the push-pull training protocol, mainly affecting the early visual processes, is more effective than the push-only protocol in reducing SED and enhancing stereoacuity, even beyond the focus of top-down attention through a stimulus-driven mechanism. We further demonstrated that the perceptual learning induced by the push-pull protocol involves both feature-based and boundary-based processes, and that the learning effect can be generalized to other stimulus dimensions within early feature channels. Therefore, our psychophysical study demonstrates the important role of inhibitory synaptic circuits in neural plasticity of the adult brain, and that our push-pull training protocol can be a more effective clinical training paradigm to treat amblyopia

    Suspended sediment concentration profiles in the bottom boundary layer

    Get PDF
    Near-bottom suspended sediment concentrations and velocities were measured on the inner shelf off Duck, N.C. from late October to early November, 1991. This period embraced both fair and storm conditions. Four bottom roughness models are tested using field data together with a wave-current boundary layer model. Bottom roughness plays a significant role in calculations of sediment concentration profiles and current velocity profiles. The importance of each of the three parts in the roughness models (grain roughness, ripple roughness, and sediment motion roughness) vary depending on forcing conditions. A new bottom roughness model is established and tested. The calculated concentration and velocity profiles using the new roughness model compare well to the measured concentration and velocity profiles. The effects of stratification and sediment composition on vertical profiles of current velocity and mean sediment concentration were also investigated. Stratification and sediment composition can have opposing effects. Since natural sediments always consists of multiple grain size components, the equivalent settling velocity is not a constant in the water column. The effects of multiple grain sizes on sediment concentration are more important in fair weather than in storms. Conversely, stratification is most effective during storms. Stratification damps the vertical turbulent transport of mass and momentum (reduces the turbulent eddy viscosity) and causes an increased shear in the current velocity profile. The limit above which stratification must be considered is represented by the stratification stability parameter (z/L = 0.03, where L is the Monin-Obukhov length). The resuspension coefficient &\gamma\sb0& was calculated from these data using a wave-current boundary layer model in association with two roughness models. The relation between &\gamma\sb0& and excess shear stress reported by Drake and Cacchione (1989), Vincent et al (1991) (i.e. resuspension coefficient decreases when excess shear stress increases) was reproduced from using both the Grant and Madsen (1982) and the new roughness models. The decrease of &\gamma\sb0& with increasing excess shear stress in that relation appears to be partially caused by the over-estimate of the sediment motion (movable bed) roughness and under-estimate of the resuspension coefficient when using the Grant and Madsen (1982) roughness model. The neglect of stratification and multiple grain size effects in the calculation of &\gamma\sb0& may also be responsible for the decline in resuspension coefficient with increasing excess shear stress. When the fraction of silt and clay is used in calculating the &\gamma\sb0& values, the &\gamma\sb0& values show no trend of being a function of the shear stress

    Waveguide transport mediated by strong coupling with atoms

    Get PDF
    We investigate single photon scattering properties in one-dimensional waveguide coupled to quantum emitter's chain with dipole-dipole interaction (DDI). The photon transport is extremely sensitive to the location of the evanescently coupled emitters. The analytical expressions of reflection and transmission amplitudes for the chain containing two emitters with DDI are deduced by using real-space Hamiltonian. Two cases, where the two emitters symmetrically and asymmetrically couple to the waveguide, are discussed in detail. It shows that the reflection and transmission typical spectra split into two peaks due to the DDI. The Fano minimum in the spectra can also be used to estimate the strength of the DDI. Furthermore, the DDI makes spectra strongly asymmetric and create a transmission window in the region where there was zero transmission. The scattering spectra for the chain consisting of multi-emitters are also given. Our key finding is that DDI can broaden the frequency band width for high reflection when the chain consists of many emitters

    M3PT: A Multi-Modal Model for POI Tagging

    Full text link
    POI tagging aims to annotate a point of interest (POI) with some informative tags, which facilitates many services related to POIs, including search, recommendation, and so on. Most of the existing solutions neglect the significance of POI images and seldom fuse the textual and visual features of POIs, resulting in suboptimal tagging performance. In this paper, we propose a novel Multi-Modal Model for POI Tagging, namely M3PT, which achieves enhanced POI tagging through fusing the target POI's textual and visual features, and the precise matching between the multi-modal representations. Specifically, we first devise a domain-adaptive image encoder (DIE) to obtain the image embeddings aligned to their gold tags' semantics. Then, in M3PT's text-image fusion module (TIF), the textual and visual representations are fully fused into the POIs' content embeddings for the subsequent matching. In addition, we adopt a contrastive learning strategy to further bridge the gap between the representations of different modalities. To evaluate the tagging models' performance, we have constructed two high-quality POI tagging datasets from the real-world business scenario of Ali Fliggy. Upon the datasets, we conducted the extensive experiments to demonstrate our model's advantage over the baselines of uni-modality and multi-modality, and verify the effectiveness of important components in M3PT, including DIE, TIF and the contrastive learning strategy.Comment: Accepted by KDD 202

    An immunization scheme for ransomware

    Get PDF
    In recent years, as the popularity of anonymous currencies such as Bitcoin has made the tracking of ransomware attackers more difficult, the amount of ransomware attacks against personal computers and enterprise production servers is increasing rapidly. The ransomware has a wide range of influence and spreads all over the world. It is affecting many industries including internet, education, medical care, traditional industry, etc. This paper uses the idea of virus immunity to design an immunization solution for ransomware viruses to solve the problems of traditional ransomware defense methods (such as anti-virus software, firewalls, etc.), which cannot meet the requirements of rapid detection and immediate prevention of new outbreaks attacks. Our scheme includes two parts: server and client. The server provides an immune configuration file and configuration file management functions, including a configuration file module, a cryptography algorithm module, and a display module. The client obtains the immunization configuration file from server in real time, and performs the corresponding operations according to the configuration file to make the computer have an immune function for a specific ransomware, including an update module, a configuration file module, a cryptography algorithm module, a control module, and a log module. This scheme controls mutexes, services, files and registries respectively, to destroy the triggering conditions of the virus and finally achieve the purpose of immunizing a computer from a specific ransomware
    corecore