321 research outputs found

    Sparse Bilinear Logistic Regression

    Full text link
    In this paper, we introduce the concept of sparse bilinear logistic regression for decision problems involving explanatory variables that are two-dimensional matrices. Such problems are common in computer vision, brain-computer interfaces, style/content factorization, and parallel factor analysis. The underlying optimization problem is bi-convex; we study its solution and develop an efficient algorithm based on block coordinate descent. We provide a theoretical guarantee for global convergence and estimate the asymptotical convergence rate using the Kurdyka-{\L}ojasiewicz inequality. A range of experiments with simulated and real data demonstrate that sparse bilinear logistic regression outperforms current techniques in several important applications.Comment: 27 pages, 5 figure

    The Neural Networks Based Needle Detection for Medical Retinal Surgery

    Full text link
    In recent years, deep learning technology has developed rapidly, and the application of deep neural networks in the medical image processing field has become the focus of the spotlight. This paper aims to achieve needle position detection in medical retinal surgery by adopting the target detection algorithm based on YOLOv5 as the basic deep neural network model. The state-of-the-art needle detection approaches for medical surgery mainly focus on needle structure segmentation. Instead of the needle segmentation, the proposed method in this paper contains the angle examination during the needle detection process. This approach also adopts a novel classification method based on the different positions of the needle to improve the model. The experiments demonstrate that the proposed network can accurately detect the needle position and measure the needle angle. The performance test of the proposed method achieves 4.80 for the average Euclidean distance between the detected tip position and the actual tip position. It also obtains an average error of 0.85 degrees for the tip angle across all test sets

    A surgical system for automatic registration, stiffness mapping and dynamic image overlay

    Full text link
    In this paper we develop a surgical system using the da Vinci research kit (dVRK) that is capable of autonomously searching for tumors and dynamically displaying the tumor location using augmented reality. Such a system has the potential to quickly reveal the location and shape of tumors and visually overlay that information to reduce the cognitive overload of the surgeon. We believe that our approach is one of the first to incorporate state-of-the-art methods in registration, force sensing and tumor localization into a unified surgical system. First, the preoperative model is registered to the intra-operative scene using a Bingham distribution-based filtering approach. An active level set estimation is then used to find the location and the shape of the tumors. We use a recently developed miniature force sensor to perform the palpation. The estimated stiffness map is then dynamically overlaid onto the registered preoperative model of the organ. We demonstrate the efficacy of our system by performing experiments on phantom prostate models with embedded stiff inclusions.Comment: International Symposium on Medical Robotics (ISMR 2018

    Reconstruction of a Long-term spatially Contiguous Solar-Induced Fluorescence (LCSIF) over 1982-2022

    Full text link
    Satellite-observed solar-induced chlorophyll fluorescence (SIF) is a powerful proxy for diagnosing the photosynthetic characteristics of terrestrial ecosystems. Despite the increasing spatial and temporal resolutions of these satellite retrievals, records of SIF are primarily limited to the recent decade, impeding their application in detecting long-term dynamics of ecosystem function and structure. In this study, we leverage the two surface reflectance bands (red and near-infrared) available both from Advanced Very High-Resolution Radiometer (AVHRR, 1982-2022) and MODerate-resolution Imaging Spectroradiometer (MODIS, 2001-2022). Importantly, we calibrate and orbit-correct the AVHRR bands against their MODIS counterparts during their overlapping period. Using the long-term bias-corrected reflectance data, a neural network is then built to reproduce the Orbiting Carbon Observatory-2 SIF using AVHRR and MODIS, and used to map SIF globally over the entire 1982-2022 period. Compared with the previous MODIS-based CSIF product relying on four reflectance bands, our two-band-based product has similar skill but can be advantageously extended to the bias-corrected AVHRR period. Further comparison with three widely used vegetation indices (NDVI, kNDVI, NIRv; all based empirically on red and near-infrared bands) shows a higher or comparable correlation of LCSIF with satellite SIF and site-level GPP estimates across vegetation types, ensuring a greater capacity of LCSIF for representing terrestrial photosynthesis. Globally, LCSIF-AVHRR shows an accelerating upward trend since 1982, with an average rate of 0.0025 mW m-2 nm-1 sr-1 per decade during 1982-2000 and 0.0038 mW m-2 nm-1 sr-1 per decade during 2001-2022. Our LCSIF data provide opportunities to better understand the long-term dynamics of ecosystem photosynthesis and their underlying driving processes
    • …
    corecore