3,090 research outputs found

    Cosmological constraints on holographic dark energy models under the energy conditions

    Full text link
    We study the holographic and agegraphic dark energy models without interaction using the latest observational Hubble parameter data (OHD), the Union2.1 compilation of type Ia supernovae (SNIa), and the energy conditions. Scenarios of dark energy are distinguished by the cut-off of cosmic age, conformal time, and event horizon. The best-fit value of matter density for the three scenarios almost steadily located at Ωm0=0.26\Omega_{m0}=0.26 by the joint constraint. For the agegraphic models, they can be recovered to the standard cosmological model when the constant cc which presents the fraction of dark energy approaches to infinity. Absence of upper limit of cc by the joint constraint demonstrates the recovery possibility. Using the fitted result, we also reconstruct the current equation of state of dark energy at different scenarios, respectively. Employing the model criteria χmin2/dof\chi^2_{\textrm{min}}/dof, we find that conformal time model is the worst, but they can not be distinguished clearly. Comparing with the observational constraints, we find that SEC is fulfilled at redshift 0.2z0.30.2 \lesssim z \lesssim 0.3 with 1σ1\sigma confidence level. We also find that NEC gives a meaningful constraint for the event horizon cut-off model, especially compared with OHD only. We note that the energy condition maybe could play an important role in the interacting models because of different degeneracy between Ωm\Omega_m and constant cc.Comment: 8 pages, 4 figures, accepted for publication in PR

    Dichlorido(4,5-diaza­fluoren-9-one-κ2 N,N′)palladium(II)

    Get PDF
    The structure of the title compound, [PdCl2(C11H6N2O)], shows a nearly square-planar geometry for the PdII atom within a Cl2N2 donor set

    Hierarchical Codebook-based Beam Training for Extremely Large-Scale Massive MIMO

    Full text link
    Extremely large-scale multiple-input multiple-output (XL-MIMO) promises to provide ultrahigh data rates in millimeter-wave (mmWave) and Terahertz (THz) spectrum. However, the spherical-wavefront wireless transmission caused by large aperture array presents huge challenges for channel state information (CSI) acquisition and beamforming. Two independent parameters (physical angles and transmission distance) should be simultaneously considered in XL-MIMO beamforming, which brings severe overhead consumption and beamforming degradation. To address this problem, we exploit the near-field channel characteristic and propose two low-overhead hierarchical beam training schemes for near-field XL-MIMO system. Firstly, we project near-field channel into spatial-angular domain and slope-intercept domain to capture detailed representations. Then we point out three critical criteria for XL-MIMO hierarchical beam training. Secondly, a novel spatial-chirp beam-aided codebook and corresponding hierarchical update policy are proposed. Thirdly, given the imperfect coverage and overlapping of spatial-chirp beams, we further design an enhanced hierarchical training codebook via manifold optimization and alternative minimization. Theoretical analyses and numerical simulations are also displayed to verify the superior performances on beamforming and training overhead.Comment: This work has been submitted to the IEEE journal for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Genome-wide association analysis identifies resistance loci for bacterial blight in a diverse collection of indica rice germplasm

    Full text link
    Bacterial blight, which is caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating rice diseases worldwide. The development and use of disease-resistant cultivars have been the most effective strategy to control bacterial blight. Identifying the genes mediating bacterial blight resistance is a prerequisite for breeding cultivars with broad-spectrum and durable resistance. We herein describe a genome-wide association study involving 172 diverse Oryza sativa ssp. indica accessions to identify loci influencing the resistance to representative strains of six Xoo races. Twelve resistance loci containing 121 significantly associated signals were identified using 317,894 single nucleotide polymorphisms, which explained 13.3–59.9% of the variability in lesion length caused by Xoo races P1, P6, and P9a. Two hotspot regions (L11 and L12) were located within or nearby two cloned R genes (xa25 and Xa26) and one fine-mapped R gene (Xa4). Our results confirmed the relatively high resolution of genome-wide association studies. Moreover, we detected novel significant associations on chromosomes 2, 3, and 6–10. Haplotype analyses of xa25, the Xa26 paralog (MRKc; LOC_Os11g47290), and a Xa4 candidate gene (LOC_11g46870) revealed differences in bacterial blight resistance among indica subgroups. These differences were responsible for the observed variations in lesion lengths resulting from infections by Xoo races P1 and P9a. Our findings may be relevant for future studies involving bacterial blight resistance gene cloning, and provide insights into the genetic basis for bacterial blight resistance in indica rice, which may be useful for knowledge-based crop improvement. (Résumé d'auteur
    corecore