48 research outputs found

    Insecticidal Activity of the Whole Grass Extract of Typha angustifolia and its Active Component against Solenopsis invicta

    Get PDF
    In this study, the toxicity of whole grass Typha angustifolia L. extract was determined in vitro by a “water tube” method to investigate the bioactivity of T. angustifolia L. against micrergates of red imported fire ants. Results indicated that the ethanol extract exhibited toxicity against the micrergates of red imported fire ants. Mortality was 100% after the micrergates were treated with 2000 mg/mL of ethanol extract for 72 h. After 48 h of treatment, LC50 values of ethanol extract and petroleum ether fraction were 956.85 and 398.73 mg/mL, respectively. After 120 h, LC50 values of the same substances were 271.23 and 152.86 mg/mL, respectively. A bioactivity-guided fractionation and chemical investigation of petroleum ether fraction yielded an active component (compound 1). NMR spectra revealed that the structure of compound 1 corresponded to 3β-hydroxy-25-methylenecycloartan-24-ol. Compound 1 also exhibited strong toxicity against the micrergates of red imported fire ants, thereby eradicating all of the tested ants treated with 240 mg/mL for 120 h. LC50 values of compound 1 at 48 and 120 h were 316.50 and 28.52 mg/mL, respectively

    Broadband surface-wave transformation cloak

    Get PDF
    Guiding surface electromagnetic waves around disorder without disturbing the wave amplitude or phase is in great demand for modern photonic and plasmonic devices, but is fundamentally difficult to realize because light momentum must be conserved in a scattering event. A partial realization has been achieved by exploiting topological electromagnetic surface states, but this approach is limited to narrow-band light transmission and subject to phase disturbances in the presence of disorder. Recent advances in transformation optics apply principles of general relativity to curve the space for light, allowing one to match the momentum and phase of light around any disorder as if that disorder were not there. This feature has been exploited in the development of invisibility cloaks. An ideal invisibility cloak, however, would require the phase velocity of light being guided around the cloaked object to exceed the vacuum speed of light—a feat potentially achievable only over an extremely narrow band. In this work, we theoretically and experimentally show that the bottlenecks encountered in previous studies can be overcome. We introduce a class of cloaks capable of remarkable broadband surface electromagnetic waves guidance around ultrasharp corners and bumps with no perceptible changes in amplitude and phase. These cloaks consist of specifically designed nonmagnetic metamaterials and achieve nearly ideal transmission efficiency over a broadband frequency range from 0+ to 6 GHz. This work provides strong support for the application of transformation optics to plasmonic circuits and could pave the way toward high-performance, large-scale integrated photonic circuits.National Natural Science Foundation (China) (Grant 61322501)National Natural Science Foundation (China) (Grant 61275183)National Top-Notch Young Professionals Program (Grant FANEDDC-200950)Program for New Century Excellent Talents (NCET-12-0489)Fundamental Research Funds for the Central Universities (Grant FRFCU-2014XZZX003-24)Nanyang Assistant Professorship Start-Up GrantSingapore. Ministry of Education (Grant Tier 1 RG27/12)Singapore. Ministry of Education (Grant MOE2011-T3-1-005)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract W911NF-13-D-0001)United States. Dept. of Energy (Solid-State Solar-Thermal Energy Conversion Center Grant de-sc0001299

    Photoactivated Insecticidal Thiophene Derivatives from Xanthopappus

    No full text

    Characterization of Storage Proteins in Wild (\u3ci\u3eGlycine soja\u3c/i\u3e) and Cultivated (\u3ci\u3eGlycine max\u3c/i\u3e) Soybean Seeds Using Proteomic Analysis

    Get PDF
    A combined proteomic approach was applied for the separation, identification, and comparison of two major storage proteins, β-conglycinin and glycinin, in wild (Glycine soja) and cultivated (Glycine max) soybean seeds. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) with three different immobilized pH gradient (IPG) strips was an effective method to separate a large number of abundant and less-abundant storage proteins. Most of the subunits of β-conglycinin were well separated in the pH range 3.0-10.0, while acidic and basic glycinin polypeptides were well-separated in pH ranges 4.0-7.0 and 6.0-11.0, respectively. Although the overall distribution pattern of the protein spots was similar in both genotypes using pH 3.0-10.0, variations in number and intensity of protein spots were better resolved using a combination of pH 4.0-7.0 and pH 6.0-11.0. The total number of storage protein spots detected in wild and cultivated genotypes was approximately 44 and 34, respectively. This is the first study reporting the comparison of protein profiles of wild and cultivated genotypes of soybean seeds using proteomic tools

    Insecticidal Activity of the Whole Grass Extract of Typha angustifolia and its Active Component against Solenopsis invicta

    No full text
    In this study, the toxicity of whole grass Typha angustifolia L. extract was determined in vitro by a “water tube” method to investigate the bioactivity of T. angustifolia L. against micrergates of red imported fire ants. Results indicated that the ethanol extract exhibited toxicity against the micrergates of red imported fire ants. Mortality was 100% after the micrergates were treated with 2000 mg/mL of ethanol extract for 72 h. After 48 h of treatment, LC50 values of ethanol extract and petroleum ether fraction were 956.85 and 398.73 mg/mL, respectively. After 120 h, LC50 values of the same substances were 271.23 and 152.86 mg/mL, respectively. A bioactivity-guided fractionation and chemical investigation of petroleum ether fraction yielded an active component (compound 1). NMR spectra revealed that the structure of compound 1 corresponded to 3β-hydroxy-25-methylenecycloartan-24-ol. Compound 1 also exhibited strong toxicity against the micrergates of red imported fire ants, thereby eradicating all of the tested ants treated with 240 mg/mL for 120 h. LC50 values of compound 1 at 48 and 120 h were 316.50 and 28.52 mg/mL, respectively.</p

    Synthesis, characterization and bioactivity of Fipronil derivatives as a lead for new insecticide

    No full text
    215-219Fipronil is the first phenylpyrazole insecticide introduced for pest control. In order to further study fipronil derivatives of better bioactivity and systemic property derived from the pyrazole-5-amine by addition reaction/elimination/substitution reaction, ten modified compounds were prepared. Their insecticidal bioactivities against the 3rd instar larvae of Plutella xylostella were determined. The data suggested that bioactivities of most of the compounds are higher than that of fipronil, while some of them showed only modest activity as compared with fipronil. </span

    Proteomic and genetic analysis of glycinin subunits of sixteen soybean genotypes

    Get PDF
    We investigated proteomic and genomic profiles of glycinin, a family of major storage proteins in 16 different soybean genotypes consisting of four groups including wild soybean (Glycine soja), unimproved cultivated soybean landraces from Asia (G. max), ancestors of N. American soybean (G. max), and modern soybean (G. max) genotypes. We observed considerable variation in all five glycinin subunits, G1, G2 G3, G4 and G5 using proteomics and genetic analysis. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS) analysis showed that the wild genotypes had a range of 25-29 glycinin protein spots that included both acidic and basic polypeptides followed by the ancestors with 24-28, modern cultivars with 24-25, and landraces with 17-23 protein spots. Overall, the wild genotypes have a higher number of protein spots when compared to the other three genotypes. Major variation was observed in acidic polypeptides of G3, G4 and G5 compared to G1 and G2, and minor variation was observed in basic polypeptides of all subunits. Our data indicated that there are major variations of glycinin subunits between wild and cultivated genotypes rather than within the same groups. Based on Southern blot DNA analysis, we observed genetic polymorphisms in group I genes (G1, G2, and G3) between and within the four genotype groups, but not in group II genes (G4 and G5). This is the first study reporting the comparative analysis of glycinin in a diverse set of soybean genotypes using combined proteomic and genetic analysis

    A green leaf volatile, (Z)-3-hexenyl-acetate, mediates differential oviposition by Spodoptera frugiperda on maize and rice

    No full text
    Abstract Background Insects rely on chemosensory perception, mainly olfaction, for the location of mates, food sources, and oviposition sites. Plant-released volatile compounds guide herbivorous insects to search for and locate their host plants, further helping them to identify suitable positions for oviposition. The fall armyworm Spodoptera frugiperda (S. frugiperda) was found to invade China in 2019 and has since seriously threatened multiple crops, particularly maize and rice. However, the chemical and molecular mechanisms underlying oviposition preference in this pest are not fully understood. Here, the oviposition preference of S. frugiperda on maize and rice plants was investigated. Results GC-EAD and GC–MS/MS techniques were used to identify the antennally active volatiles from maize and rice plants. The attraction and oviposition stimulation of identified components to female adults were tested in both laboratory and field settings. The odorant receptors (ORs) on female antennae were expressed in Xenopus oocytes, and their functions evaluated by RNAi. Ten and eleven compounds of maize and rice plants, respectively, were identified to possess electrophysiological activity from headspace volatiles. Among these compounds, (Z)-3-hexenyl-acetate specifically presented in maize volatiles was found to play a critical role in attracting females and stimulating oviposition compared to rice volatiles. Among the cloned ORs on the antennae of both sexes, SfruOR23 with highly female-biased expression mediated the responses of females to (Z)-3-hexenyl-acetate. Knockdown of SfruOR23 using RNAi markedly reduced the electrophysiological response of female antennae and oviposition preference to the compound. Conclusions (Z)-3-Hexenyl-acetate is a key volatile mediating the host and oviposition preference of S. frugiperda on maize. The olfactory receptor of (Z)-3-hexenyl-acetate was identified to be SfruOR23, which is mainly expressed in the antennae of S. frugiperda
    corecore