1,139 research outputs found

    Assessment of risk of disproportionate collapse of steel building structures exposed to multiple hazards

    Get PDF
    Vulnerability of buildings to disproportionate (or progressive) collapse has become an increasingly important performance issue following the collapses of the Alfred P. Murrah Federal Building in Oklahoma City in 1995 and the World Trade Center in 2001. Although considerable research has been conducted on this topic, there are still numerous unresolved research issues. This dissertation is aimed at developing structural models and analysis procedures for robustness assessment of steel building structures typical of construction practices in the United States, and assessing the performance of these typical structures. Beam-column connections are usually the most vulnerable elements in steel buildings structures suffering local damage. Models of three typical frame connections for use in robustness assessment have been developed with different techniques, depending on the experimental data available to support such models. A probabilistic model of a pre-Northridge moment-resisting connection was developed through finite element simulations, in which the uncertainties in the initial flaw size, beam yield strength and fracture toughness of the weld were considered. A macro-model for a bolted T-stub connections was developed by considering the behavior of each connection element individually (i.e. T-stub, shear tab and panel zone) and assembling the elements to form a complete connection model, which was subsequently calibrated to experimental data. For modeling riveted connections in older steel buildings that might be candidates for rehabilitation, a new method was proposed to take advantage of available experimental data from tests of earthquake-resistant connections and to take into account the effects of the unequal compressive and tensile stiffnesses of top and bottom parts in a connection and catenary action. These connection models were integrated into nonlinear finite element models of structural systems to allow the effect of catenary and other large-deformation action on the behavior of the frames and their connections following initial local structural damage to be assessed. The performance of pre-Northridge moment-resisting frames was assessed with both mean-centered deterministic and probabilistic assessment procedures; the significance of uncertainties in collapse assessment was examined by comparing the results from both procedures. A deterministic assessment of frames with full and partial-strength bolted T-stub connections was conducted considering three typical beam spans in both directions. The vulnerability of an older steel building with riveted connections was also analyzed deterministically. The contributions from unreinforced masonry infill panels and reinforced concrete slabs on the behavior of the building were investigated. To meet the need for a relatively simple procedure for preliminary vulnerability assessment, an energy-based nonlinear static pushdown analysis procedure was developed. This procedure provides an alternative method of static analysis of disproportionate collapse vulnerability that can be used as an assessment tool for regular building frames subjected to local damage. Through modal analysis, dominant vibration modes of a damaged frame were first identified. The structure was divided into two parts, each of which had different vibration characteristics and was modeled by a single degree-of-freedom (SDOF) system separately. The predictions were found to be sufficiently close to the results of a nonlinear dynamic time history analysis (NTHA) that the method would be useful for collapse-resistant design of buildings with regular steel framing systems.Ph.D.Committee Chair: Ellingwood, Bruce; Committee Member: Kardomateas, George; Committee Member: White, Donald; Committee Member: Will, Kenneth; Committee Member: Zureick, Abdul-Hami

    Direct measurement of through-plane thermal conductivity of partially saturated fuel cell diffusion media

    Get PDF
    Polymer electrolyte fuel cells (PEFCs) are predicted by many as the most feasible alternative to heat engines and for battery replacement in automotive, portable, and stationary power applications. Fuel cell performance and durability are inseparably related to the presence of liquid water throughout the fuel cell system. To better understand the mechanical and thermal characterization of diffusion media (DM) is essential to PEFC DM design, optimization and production to improve water and thermal managements. Diffusion media are one of the important components in PEFCs in terms of the reactant permeability, the product permeability, the electronic conductivity, the heat conductivity, and the mechanical strength. Thermal conductivity is a particularly important parameter due to the interplay between heat and water management. The thickness of DM is one of the components that are highly dependable on compression. In this study, optical microscope was used to investigate the stress strain relationship. Nonlinear sharp increase in strain at initial compressive loading was observed. Thermal conductivity of all dry DM was found to increase with compression. Measured and predicted maximum thermal conductivity as a function of saturation for DM at 2MPa compression was performed. There was a significant increase in thermal conductivity with an increase in saturation. Thermal conductivity as a function of both compression and saturation was developed

    The crossing number of locally twisted cubes

    Full text link
    The {\it crossing number} of a graph GG is the minimum number of pairwise intersections of edges in a drawing of GG. Motivated by the recent work [Faria, L., Figueiredo, C.M.H. de, Sykora, O., Vrt'o, I.: An improved upper bound on the crossing number of the hypercube. J. Graph Theory {\bf 59}, 145--161 (2008)] which solves the upper bound conjecture on the crossing number of nn-dimensional hypercube proposed by Erd\H{o}s and Guy, we give upper and lower bounds of the crossing number of locally twisted cube, which is one of variants of hypercube.Comment: 17 pages, 12 figure

    Study on barrel vibration characteristics of typical sniper rifle

    Get PDF
    The firing accuracy of sniper rifle is significantly affected by the barrel vibration induced by shooting load. The barrel vibration is an important parameter needing to be precisely controlled, whose measurement is less studied before. The vertical vibration characteristics of sniper rifle barrel is obtained for the duration of 500 ms with high speed photography system. Both the averaged vibration frequency and maximum amplitude of the measured muzzle are gained. It is found from the test that after the appearance of the maximum value, the vibration amplitude of the muzzle reduces with nearly fixed vibration frequency. In addition, the finite element model is conducted for the barrel vibration regarding sniper rifle. And then the natural frequency as well as the vibration reflection of the barrel under the effort of shooting load is calculated with the model. The model accuracy is well validated for the numerical results are substantially in line with the measurements

    PerfBlower: Quickly Detecting Memory-Related Performance Problems via Amplification

    Get PDF
    Performance problems in managed languages are extremely difficult to find. Despite many efforts to find those problems, most existing work focuses on how to debug a user-provided test execution in which performance problems already manifest. It remains largely unknown how to effectively find performance bugs before software release. As a result, performance bugs often escape to production runs, hurting software reliability and user experience. This paper describes PerfBlower, a general performance testing framework that allows developers to quickly test Java programs to find memory-related performance problems. PerfBlower provides (1) a novel specification language ISL to describe a general class of performance problems that have observable symptoms; (2) an automated test oracle via emph{virtual amplification}; and (3) precise reference-path-based diagnostic information via object mirroring. Using this framework, we have amplified three different types of problems. Our experimental results demonstrate that (1) ISL is expressive enough to describe various memory-related performance problems; (2) PerfBlower successfully distinguishes executions with and without problems; 8 unknown problems are quickly discovered under small workloads; and (3) PerfBlower outperforms existing detectors and does not miss any bugs studied before in the literature

    Preparation and in vitro/in vivo evaluation of orally disintegrating/modified-release praziquantel tablets

    Get PDF
    This study was designed to develop orally disintegrating/sustained-release praziquantel (PZQ) tablets using the hot-melt extrusion (HME) technique and direct compression, and subse-quently evaluate their release in in vitro and in vivo pharmacokinetics. For the extrusion process, hypromellose acetate succinate (HPMCAS)-LG was the carrier of pure PZQ, with a standard screw configuration used at an extrusion temperature of 140◦ C and a screw rotation speed of 100 rpm. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD) and Fourier-transform infrared spectroscopy (FTIR) were performed to characterize the extru-date. Orally disintegrating/sustained-release praziquantel tablets (PZQ ODSRTs) were prepared by direct compression after appropriate excipients were blended with the extrudate. The release amount was 5.10% in pH 1.0 hydrochloric acid at 2 h and over 90% in phosphoric acid buffer at 45 min, indicating the enteric-coating character of PZQ ODSRTs. Compared with the pharmacokinetics of marketed PZQ tablets (Aipuruike®) in dogs, the times to peak (Tmax), elimination half-life (t1/2λ) and mean residence time (MRT) were extended in PZQ ODSRTs, and the relative bioavailability of PZQ ODSRTs was up to 184.48% of that of Aipuruike®. This study suggested that PZQ ODSRTs may have potential for the clinical treatment of parasitosis

    Preparation, evaluation, and pharmacokinetics in beagle dogs of a taste-masked flunixin meglumine orally disintegrating tablet prepared using hot-melt extrusion technology and D-optimal mixture design

    Get PDF
    Flunixin meglumine (FM) is a nonsteroidal anti-inflammatory drug limited by irritation of the respiratory tract and mucosa in veterinary tissue. This study aimed to develop a taste-masked FM solid dispersion (SD) by hot-melt extrusion (HME) and formulate an orally disintegrating tablet (ODT) with selected excipients by direct compression. Eudragit® E PO was chosen as the matrix, and HME parameters were optimized: extrusion temperature, 135℃; screw speed, 100 rpm; and drug loading, 20%. Characterization techniques proved that FM was rendered amorphous in the HME extrudate. In vitro dissolution studies showed that FM SD released significantly slower than the corresponding physical mixture in artificial saliva. Excipients were selected based on compression formability, disintegration, and solubility. A D-optimal mixture design was used to optimize the composition: 25% FM SD, 18.75% microcrystalline cellulose, 52.5% mannitol, 3.75% low-substituted hydroxypropyl cellulose, and 1% magnesium stearate. Taste-masked FM ODT had a tensile strength of 0.7 ± 0.01 MPa and a disintegration time of 17.6 ± 0.1 s. E-tongue and E-nose analysis showed that FM ODT had a better taste-masked effect than commercial granules. Finally, a pharmacokinetic study proved that the main pharmacokinetic parameters of FM ODT were not significantly different from those of commercial granules, which indicated that these formulations had similar pharmacokinetic behaviours in beagles
    • …
    corecore