179 research outputs found

    Secure Wireless Communication via Movable-Antenna Array

    Full text link
    Movable antenna (MA) array is a novel technology recently developed where positions of transmit/receive antennas can be flexibly adjusted in the specified region to reconfigure the wireless channel and achieve a higher capacity. In this letter, we, for the first time, investigate the MA array-assisted physical-layer security where the confidential information is transmitted from a MA array-enabled Alice to a single-antenna Bob, in the presence of multiple single-antenna and colluding eavesdroppers. We aim to maximize the achievable secrecy rate by jointly designing the transmit beamforming and positions of all antennas at Alice subject to the transmit power budget and specified regions for positions of all transmit antennas. The resulting problem is highly non-convex, for which the projected gradient ascent (PGA) and the alternating optimization methods are utilized to obtain a high-quality suboptimal solution. Simulation results demonstrate that since the additional spatial degree of freedom (DoF) can be fully exploited, the MA array significantly enhances the secrecy rate compared to the conventional fixed-position antenna (FPA) array

    Marine biogenic aerosols and their effects on aerosol-cloud interactions over the Southern Ocean: a review

    Get PDF
    The Southern Ocean (SO) plays an important role in the global climate system. Changes in SO biogeochemistry and marine ecosystems may influence the distribution of atmospheric aerosols and clouds and impact the climate system. We reviewed current knowledge on the interactions between marine aerosols and clouds over the SO. We focused on marine primary and secondary organic aerosols and summarized their characteristics, processes and roles as cloud condensation nuclei and ice nuclei. We described in detail the interactions between the marine ecosystem, aerosols and clouds. We discussed marine productivity, formation of marine biogenic aerosols and interactions between aerosols, clouds and climate. We explored the impact of climate change on SO marine ecosystem productivity and aerosol–cloud–climate feedback. Marine biogenic aerosols could impact the radiation budget and oceanic low-level clouds over the SO. This study contributes towards an improved understanding of marine productivity, aerosol-cloud interactions and climate change in the SO. The SO may respond to climate change in varying degrees. More studies are urgently needed to support accurate forecasts of future changes in the SO

    Multiple processes affecting surface seawater N2O saturation anomalies in tropical oceans and Prydz Bay, Antarctica

    Get PDF
    We analyzed the N2O content of surface seawater sampled from Prydz Bay, Antarctica, on a cruise track between 30°S and 30°N during the twenty-second Chinese National Antarctic Research Expedition during austral summer, 2006. The surface water showed an average pN2O value of 311.9±7.6 nL·L-1 (14.1±0.4 nmol·L-1), which was slightly undersaturated. The air-sea N2O flux in the region was -0.3±0.8 μmol·m-2·d-1; however, N2O in the surface water was oversaturated in most stations along the cruise track. Saturation anomalies were greater than 10%, with a maximum of 54.7% being observed at the Equator, followed by 31% at 10°N in the Sulu Sea. The air-sea fluxes at these locations were 12.4 and 4 μmol·m-2·d-1, respectively. Overall, the results indicated that surface water in Prydz Bay was near equilibrium with atmospheric N2O, and that ocean waters in lower latitudes acted as a N2O source. Physical processes such as stratification, ice-melt water dilution, and solar radiation dominate the factors leading to N2O saturation of surface water of Prydz Bay, while biological production and upwelling are primarily responsible for the N2O oversaturation of surface water observed in subtropical and tropical regions along the cruise track

    Backstepping Synthesis for Feedback Control of First-Order Hyperbolic PDEs with Spatial-Temporal Actuation

    Get PDF
    This paper deals with the stabilization problem of first-order hyperbolic partial differential equations (PDEs) with spatial-temporal actuation over the full physical domains. We assume that the interior actuator can be decomposed into a product of spatial and temporal components, where the spatial component satisfies a specific ordinary differential equation (ODE). A Volterra integral transformation is used to convert the original system into a simple target system using the backstepping-like procedure. Unlike the classical backstepping techniques for boundary control problems of PDEs, the internal actuation can not eliminate the residual term that causes the instability of the open-loop system. Thus, an additional differential transformation is introduced to transfer the input from the interior of the domain onto the boundary. Then, a feedback control law is designed using the classic backstepping technique which can stabilize the first-order hyperbolic PDE system in a finite time, which can be proved by using the semigroup arguments. The effectiveness of the design is illustrated with some numerical simulations

    Chemical composition of marine aerosols of the 26th Chinese National Antarctic Research Expedition

    Get PDF
    The ionic compositions of aerosol samples collected during the 26th Chinese National Antarctic Research Expedition were analyzed and the sources of ions were distinguished. Cl(-), Na(+), SO(2-)4 , NO(-)3 , and Mg2+ were the most abundant ionic components in the marine aerosols. Cl¡ and Na+ contributed over 70% in the total ionic composition, indicating the sea salt is still the primary composition in marine aerosols, followed by the sulfate as the secondary ionic component existed as NH4NO3, NH4HSO4, (NH4)2SO4. The maximal sea salt concentrations were found at around 40±S and could be attributed to greater winds. The concentrations of methane sulfonic acid (MSA) appeared increasing trend from the low to high latitudes, possibly caused by lower temperature in air and higher marine biological processes in the marginal waters in Antarctica. The correlation and factor analyzes were used to investigate possible sources of these ions. Cl(-), Br(-), Na(+), K(+), Mg(2+) and Ca(2+) had predominantly marine sources; while F(-), NO(-)3 and NH(+)4 had mostly anthropogenic sources; MSA had marine biogenic sources. The concentrations of SO2¡ 4 were influenced by both marine and anthropogenic sources

    DMS sea-to-air fluxes and their influence on sulfate aerosols over the Southern Ocean, south-east Indian Ocean and north-west Pacific Ocean

    Get PDF
    Environmental context The ocean-produced dimethyl sulfide (DMS) molecule is thought to affect cloud formation and the solar radiation budget at the Earth's surface, hence playing an important role in regulating climate. In this study, we calculated the DMS sea-to-air flux across the Southern Ocean, south-east Indian Ocean and north-west Pacific Ocean, and analysed the influence of DMS fluxes on sulfate aerosols. These results improved our understanding of the effects of DMS emissions on sulfate compounds in the atmosphere over the global ocean. Oceanic dimethyl sulfide (DMS) is the most abundant biogenic sulfur compound emitted into the atmosphere and could indirectly regulate the global climate by impacting end product sulfate aerosols. DMS emissions and their influence on sulfate aerosols, i.e. methanesulfonic acid (MSA) and non-sea-salt sulfate (nss-SO42-), were investigated over the Atlantic Ocean and Indian Ocean sectors of the Southern Ocean (SO), the south-east Indian Ocean, and the north-west Pacific Ocean from February to April 2014 during the 30th Chinese National Antarctic Research Expedition. We found a strong large-scale DMS source in the marginal sea ice zone from 34 degrees W to 14 degrees E of the SO (south of 60 degrees S), in which the mean flux was 49.0 +/- 65.6 mu mol m(-2) d(-1) (0.6-308.3 mu mol m(-2) d(-1), n = 424). We also found a second large-scale DMS source in the South Subtropical Front (similar to 40 degrees S, up to 50.8 mu mol m(-2) d(-1)). An inconsistency between concentrations of atmospheric sulfate compounds and DMS emissions along the cruise track was observed. The horizontal advection of air masses was likely the main reason for this discrepancy. Finally, the biological exposure calculation results also indicated that it is very difficult to observe a straightforward relationship between oceanic biomass and atmospheric MSA

    A recombinant avian antibody against VP2 of infectious bursal disease virus protects chicken from viral infection

    Get PDF
    【Abstract】A stable cell-line was established that expressed the recombinant avian antibody (rAb) against the infectious bursal disease virus (IBDV). rAb exhibited neutralization activity to IBDV-B87 strain in DF1 cells. The minimum rAb concentration required for inhibition of the cytopathic effect (CPE) was 1.563 μg/mL. To test the efficacy of rAb, a 168-h cohabitation challenge experiment was performed to transmit the disease from the chickens challenged with vvIBDV (HLJ0504 strain) to three test groups of chickens, i.e. (1) chickens treated with rAb, (2) chickens treated with yolk antibody, and (3) non-treatment chickens. The survival rates of chickens treated with rAb, yolk antibody and without treatment were 73%, 67% and 20%, respectively. Another batch of chickens was challenged with IBDV (BC6/85 strain) and then injected with rAb (1.0 mg/kg) 6, 24 and 36 h post-challenge. Non-treatment chickens had 100% morbidity, whereas those administered with rAb exhibited only 20% morbidity. Morbidity was evaluated using clinical indicators and bursal histopathological section. This study provides a new approach to treating IBDV and the rAb represents a promising candidate for this IBDV therapy.This research was supported by Heilongjiang province project of applied technology research and development (2013GC13C105) and The National Natural Science Fund biologic science base improve program of research training and capacity (J1210069/J0124)
    corecore