8 research outputs found

    An Inverted Perovskite Solar Cell with Good Comprehensive Performance Realized by Reducing the Concentration of Precursors

    No full text
    Inverted perovskite solar cells (PSCs) exhibit great potential for industrial application thanks to their low complexity and low fabrication temperature. Aiming at commercial applications, it is necessary to comprehensively consider the material consumption and its corresponding electrical performance. Here, a simple strategy has been proposed to obtain inverted PSCs with comprehensive performance, that is, reaching an acceptable electrical performance by reducing the usage of perovskite. More precisely, the inverted PSCs, whose perovskite film is prepared by 1.0 M precursor, yields a power conversion efficiency (PCE) of 15.50%, fulfilling the requirement for real commercial application. In addition, the thickness of the electron transport layer (C60 in this work) in the above inverted PSCs was further optimized by comparing the simulated absorption spectrum, J-V characteristics and impedance with three different thicknesses of C60 layer. More excitingly, the optimized device displays high storage stability which maintains more than 90% of its initial PCE for 28 days. Therefore, our work provides a simple and cost-effective method to reach good comprehensive performance of inverted PSCs for commercial applications

    Boosting Performance of Inverted Perovskite Solar Cells by Diluting Hole Transport Layer

    No full text
    In our study, by developing the diluted PEDOT:PSS (D-PEDOT:PSS) to replace PEDOT:PSS stock solution as hole transport layer (HTL) materials for fabricating the inverted perovskite solar cells (PSCs), the performance of developed device with ITO/D-PEDOT:PSS/MAPbI3−xClx/C60/BCP/Ag structure is enhanced distinctly. Experimental results reveal that when the dilution ratio is 10:1, the optimal power conversion efficiency (PCE) of the D-PEDOT:PSS device can reach up to 17.85% with an increase of 11.28% compared to the undiluted PEDOT:PSS device. A series of investigations have confirmed that the efficiency improvement is mainly attributed to the two aspects: on one hand, the transmittance and conductivity of D-PEDOT:PSS HTL are improved, and the density of defect states at the interface is reduced after dilution, promoting the separation and transmission of charges, thus the short-circuit current (JSC) is significantly increased; on the other hand, the work function of D-PEDOT:PSS becomes more consistent with perovskite layer, and the voltage loss is reduced, so that the higher open circuit voltage (VOC) is obtained. Our research has indicated that diluting HTL develops a simpler, more efficient and cost-effective method to further improve performance for inverted PSCs

    Interfacial defect passivation by novel phosphonium salts yields 22% efficiency perovskite solar cells: Experimental and theoretical evidence

    No full text
    We modified perovskite/Spiro-OMeTAD interface by using two novel phosphonium salts containing PF6− counter anion (i.e., ClTPPPF6 and BrTPPPF6). The cation and anion in phosphonium salts possess not only ionic bonds but also coordination bonds with perovskites. The anion and cation vacancies at the surface and GBs of perovskite films can be filled by phosphonium cations and PF6− anions, respectively, resulting in reduced defect density and prolonged carrier lifetimes. The stronger chemical interaction and accordingly better defect passivation were certified for BrTPPPF6 than ClTPPPF6. As a result, the devices modified by ClTPPPF6 and BrTPPPF6 deliver a PCE of 21.73% and 22.15%, respectively, which far exceed 20.6% of the control device. The unsealed BrTPPPF6 modified device maintains 98.2% of its initial efficiency value after thermal aging of 1320 h whereas merely 84.7% for the control device. 96.4% of its original efficiency was retained for BrTPPPF6-modified device after ambient exposure of 2016 h.11Ysci

    Self‐Formed Multifunctional Grain Boundary Passivation Layer Achieving 22.4% Efficient and Stable Perovskite Solar Cells

    No full text
    The deep-level defects at grain boundary (GB) result in serious trap-assisted non-radiative recombination. Moreover, the degradation of perovskite films is preferentially triggered by the attack of GBs by water and/or oxygen. Therefore, it is urgently needed to develop a multifunctional GB tailoring strategy to address the abovementioned issues. Herein, a self-formed multifunctional GB passivation strategy is reported, where an ultrathin GB passivation layer is in situ constructed via incorporating K2SO4 into perovskite precursor solution. The self-formed GB passivation layer plays multiple functions, including crystallization improvement, defect passivation, and moisture resistance. The GB manipulation strategy endows perovskite films reduced defect density, boosted carrier lifetime, and thus suppressed non-radiative recombination, which contributes to efficiency enhancement from 20.39% to 22.40%. The GB tailoring approach makes the unencapsulated target device exhibit no degradation while the control device degrades to 93% of its initial power conversion efficiency after 1200 h ambient exposure with a relative humidity of 10–20%. The modified device maintains 98% of its original efficiency after aging at 60 °C for 1200 h, whereas only 89% for the control device. Herein, the importance of developing an in situ GB modification strategy in enhancing performance of perovskite photovoltaics is highlighted.11Nsciescopu

    Simultaneous Passivation of Bulk and Interface Defects with Gradient 2D/3D Heterojunction Engineering for Efficient and Stable Perovskite Solar Cells

    No full text
    © 2022 American Chemical Society.Minimizing bulk and interfacial nonradiative recombination losses is key to further improving the photovoltaic performance of perovskite solar cells (PSC) but very challenging. Herein, we report a gradient dimensionality engineering to simultaneously passivate the bulk and interface defects of perovskite films. The 2D/3D heterojunction is skillfully constructed by the diffusion of an amphiphilic spacer cation from the interface to the bulk. The 2D/3D heterojunction engineering strategy has achieved multiple functions, including defect passivation, hole extraction improvement, and moisture stability enhancement. The introduction of tertiary butyl at the spacer cation should be responsible for increased film and device moisture stability. The device with 2D/3D heterojunction engineering delivers a promising efficiency of 22.54% with a high voltage of 1.186 V and high fill factor of 0.841, which benefits from significantly suppressed bulk and interfacial nonradiative recombination losses. Moreover, the modified devices demonstrate excellent light, thermal, and moisture stability over 1000 h. This work paves the way for the commercial application of perovskite photovoltaics.11Nsciescopu
    corecore