301,719 research outputs found

    Redshift evolution of extragalactic rotation measures

    Full text link
    We obtained rotation measures of 2642 quasars by cross-identification of the most updated quasar catalog and rotation measure catalog. After discounting the foreground Galactic Faraday rotation of the Milky Way, we get the residual rotation measure (RRM) of these quasars. We carefully discarded the effects from measurement and systematical uncertainties of RRMs as well as large RRMs from outliers, and get marginal evidence for the redshift evolution of real dispersion of RRMs which steady increases to 10 rad m2^{-2} from z=0z=0 to z1z\sim1 and is saturated around the value at higher redshifts. The ionized clouds in the form of galaxy, galaxy clusters or cosmological filaments could produce the observed RRM evolutions with different dispersion width. However current data sets can not constrain the contributions from galaxy halos and cosmic webs. Future RM measurements for a large sample of quasars with high precision are desired to disentangle these different contributions.Comment: 9 pages, 6 figures. Accepted by MNRA

    A compiled catalog of rotation measures of radio point sources

    Full text link
    We compiled a catalog of Faraday rotation measures (RMs) for 4553 extragalactic radio point sources ublished in literature. These RMs were derived from multi-frequency polarization observations. The RM data are compared to those in the NRAO VLA Sky Survey (NVSS) RM catalog. We reveal a systematic uncertainty of about 10.0±1.510.0 \pm 1.5\,rad~m2^{-2} in the NVSS RM catalog. The Galactic foreground RM is calculated through a weighted averaging method by using the compiled RM catalog together with the NVSS RM catalog, with careful consideration of uncertainties in the RM data. The data from the catalog and the interface for the Galactic foreground RM calculations are publicly available on the webpage: http://zmtt.bao.ac.cn/RM/.Comment: 17 pages, 8 figures. Published already, at http://www.raa-journal.org/raa/index.php/raa/article/view/171

    Appropriate Models In Decision Support Systems For River Basin Management

    Get PDF
    In recent years, new ideas and techniques appear very quickly, like sustainability, adaptive management, Geographic Information System, Remote Sensing and participations of new stakeholders, which contribute a lot to the development of decision support systems in river basin management. However, the role of models still needs to be emphasized, especially for model-based decision support systems. This paper aims to find appropriate models for decision support systems. An appropriate system is defined as ‘the system can produce final outputs which enable the decision makers to distinguish different river engineering measures according to the current problem’. An appropriateness framework is proposed mainly based on uncertainty and sensitivity analysis. A flood risk model is used, as a part of the Dutch River Meuse DSS to investigate whether the appropriate framework works. The results showed that the proposed approach is applicable and helpful to find appropriate models
    corecore