1,200 research outputs found

    Single-cell western blotting.

    Get PDF
    To measure cell-to-cell variation in protein-mediated functions, we developed an approach to conduct ∼10(3) concurrent single-cell western blots (scWesterns) in ∼4 h. A microscope slide supporting a 30-μm-thick photoactive polyacrylamide gel enables western blotting: settling of single cells into microwells, lysis in situ, gel electrophoresis, photoinitiated blotting to immobilize proteins and antibody probing. We applied this scWestern method to monitor single-cell differentiation of rat neural stem cells and responses to mitogen stimulation. The scWestern quantified target proteins even with off-target antibody binding, multiplexed to 11 protein targets per single cell with detection thresholds of <30,000 molecules, and supported analyses of low starting cell numbers (∼200) when integrated with FACS. The scWestern overcomes limitations of antibody fidelity and sensitivity in other single-cell protein analysis methods and constitutes a versatile tool for the study of complex cell populations at single-cell resolution

    Aligning Sub-national Climate Actions for the new post-Paris Climate Regime

    Get PDF
    The rise of sub-national actors in global climate governance underscores the need for clear alignment between these efforts and their national counterparts. As these sub-national climate actions are filling gaps in mitigation, adaptation, and financing, among other functions, a critical question is how these efforts complement or overlap with national climate pledges. This consideration is particularly important in the context of the Paris Agreement’s mandate for fiveyear review cycles, where national governments will be asked to demonstrate progress towards climate mitigation goals and increase their ambition. In this paper, we argue that alignment – both vertically between multiple jurisdictions and horizontally with external networks and actors – is critical to clarifying climate actions between multiple levels of actors and to maximizing mitigation potential. We use nine case studies to demonstrate the varying degrees and modes of vertical integration between subnational and national climate actors. We find that the case studies embody different styles of vertical alignment, and exhibit significant variation in the degree and direction of vertical alignment within each of these modes. We also find that many case studies rely on horizontally- aligned international networks and coalitions to fill gaps in financial resources or technical support. As a proof of concept, we demonstrate that an additional 1 gigaton carbon dioxide equivalent (CO2e) in 2020 can be achieved in these nine case studies through stronger alignment that makes it possible to scale sub-national climate actions to the national level. These findings suggest there may be a missed opportunity to realize greater mitigation potential by fostering stronger vertical alignment, and enhancing coordination between horizontal networks of climate action and national governments

    Visualization of lithium-ion transport and phase evolution within and between manganese oxide nanorods.

    Get PDF
    Multiple lithium-ion transport pathways and local phase changes upon lithiation in silver hollandite are revealed via in situ microscopy including electron diffraction, imaging and spectroscopy, coupled with density functional theory and phase field calculations. We report unexpected inter-nanorod lithium-ion transport, where the reaction fronts and kinetics are maintained within the neighbouring nanorod. Notably, this is the first time-resolved visualization of lithium-ion transport within and between individual nanorods, where the impact of oxygen deficiencies is delineated. Initially, fast lithium-ion transport is observed along the long axis with small net volume change, resulting in two lithiated silver hollandite phases distinguishable by orthorhombic distortion. Subsequently, a slower reaction front is observed, with formation of polyphase lithiated silver hollandite and face-centred-cubic silver metal with substantial volume expansion. These results indicate lithium-ion transport is not confined within a single nanorod and may provide a paradigm shift for one-dimensional tunnelled materials, particularly towards achieving high-rate capability

    Infrared Variability of Two Dusty White Dwarfs

    Get PDF
    The most heavily polluted white dwarfs often show excess infrared radiation from circumstellar dust disks, which are modeled as a result of tidal disruption of extrasolar minor planets. Interaction of dust, gas, and disintegrating objects can all contribute to the dynamical evolution of these dust disks. Here, we report on two infrared variable dusty white dwarfs, SDSS J1228+1040 and G29-38. For SDSS J1228+1040, compared to the first measurements in 2007, the IRAC [3.6] and [4.5] fluxes decreased by 20% by 2014 to a level also seen in the recent 2018 observations. For G29-38, the infrared flux of the 10 μ\mum silicate emission feature became 10% stronger between 2004 and 2007, We explore several scenarios that could account for these changes, including tidal disruption events, perturbation from a companion, and runaway accretion. No satisfactory causes are found for the flux drop in SDSS J1228+1040 due to the limited time coverage. Continuous tidal disruption of small planetesimals could increase the mass of small grains and concurrently change the strength of the 10 μ\mum feature of G29-38. Dust disks around white dwarfs are actively evolving and we speculate that there could be different mechanisms responsible for the temporal changes of these disks.Comment: ApJ, in pres

    Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling.

    Get PDF
    Drought has promoted large-scale, insect-induced tree mortality in recent years, with severe consequences for ecosystem function, atmospheric processes, sustainable resources and global biogeochemical cycles. However, the physiological linkages among drought, tree defences, and insect outbreaks are still uncertain, hindering our ability to accurately predict tree mortality under on-going climate change. Here we propose an interdisciplinary research agenda for addressing these crucial knowledge gaps. Our framework includes field manipulations, laboratory experiments, and modelling of insect and vegetation dynamics, and focuses on how drought affects interactions between conifer trees and bark beetles. We build upon existing theory and examine several key assumptions: (1) there is a trade-off in tree carbon investment between primary and secondary metabolites (e.g. growth vs defence); (2) secondary metabolites are one of the main component of tree defence against bark beetles and associated microbes; and (3) implementing conifer-bark beetle interactions in current models improves predictions of forest disturbance in a changing climate. Our framework provides guidance for addressing a major shortcoming in current implementations of large-scale vegetation models, the under-representation of insect-induced tree mortality

    Impact on Diet Quality and Resilience in Urban Community Dwelling Obese Women with a Nutrition and Physical Activity Intervention

    Get PDF
    Objective: To examine the effect of a Tai Chi, resistance training, and behaviorally-based diet education intervention on dietary quality as well as resilience and physical resilience in obese older women. Design: Community health outreach with a quasi-experimental design. Setting: An urban senior center in Rhode Island. Participants: Thirty-three women, 85% were minorities, with mean age of 65±8.2 years and BMI of 37.3±4.6 kg/m2, were enrolled in the study at baseline however only 17 women in the intervention (EXD) group and 9 women in the wait-list control (CON) group completed the study. Measurement: Dietary quality and nutrition risk were measured using the Dietary Screening Tool (DST), resilience was measured by the Resilience Scale, and physical resilience was examined using the Physical Resilience Scale. Intervention: Participants in the EXD group engaged in 12 weeks of Tai Chi, resistance training, and behaviorally-based diet education. The diet education was based off of the modified Dietary Approaches to Stop Hypertension (DASH) diet and led by a Registered Dietitian. Results: There was no change in dietary quality by group or time. However the EXD group had significantly higher dietary quality compared to the control group (p=0.025) at post intervention, although there was no difference in nutrition risk category. There was no change seen in overall resilience, however the EXD group improved physical resilience (p=0.048). Conclusion: A community health outreach that involved Tai Chi, resistance training, and behaviorally-based diet education may promote higher dietary quality as well as improve physical resilience in obese older women

    Empathy and Low Participation of Women in Engineering: Is There a Hidden Link

    Get PDF
    Women are severely underrepresented in science, technology, engineering, and mathematics (STEM) education and the related work force. One of the reasons for the low presence of women in engineering is a lack of connection between engineering-related values and women’s personal values and beliefs, in particular the difference in empathy value. This study examined how empathy may have contributed to the low enrollment of women in engineering majors. An online survey was used to collect data from undergraduate students in an urban university in the United States. Statistical procedures were carefully selected to analyze the survey data and answer the four research questions. The results indicate that 1) students with a stronger empathizing trait reported lower likelihood of majoring in engineering; and 2) the perceived empathy level of a given academic discipline was a significant factor in students’ major choice. The lower likelihood of majoring in engineering was associated with its low empathy level perceived by the students. The major findings of the study call for reformulation of the engineering education so that human-centered values can be emphasized as critical components to the existing curricula

    Evaluation of Sibel’s Advanced Neonatal Epidermal (ANNE) wireless continuous physiological monitor in Nairobi, Kenya

    Get PDF
    Background: Neonatal multiparameter continuous physiological monitoring (MCPM) technologies assist with early detection of preventable and treatable causes of neonatal mortality. Evaluating accuracy of novel MCPM technologies is critical for their appropriate use and adoption. Methods: We prospectively compared the accuracy of Sibel’s Advanced Neonatal Epidermal (ANNE) technology with Masimo’s Rad-97 pulse CO-oximeter with capnography and Spengler’s Tempo Easy reference technologies during four evaluation rounds. We compared accuracy of heart rate (HR), respiratory rate (RR), oxygen saturation (SpO2), and skin temperature using Bland-Altman plots and root-mean-square deviation analyses (RMSD). Sibel’s ANNE algorithms were optimized between each round. We created Clarke error grids with zones of 20% to aid with clinical interpretation of HR and RR results. Results: Between November 2019 and August 2020 we collected 320 hours of data from 84 neonates. In the final round, Sibel’s ANNE technology demonstrated a normalized bias of 0% for HR and 3.1% for RR, and a non-normalized bias of -0.3% for SpO2 and 0.2°C for temperature. The normalized spread between 95% upper and lower limits-of-agreement (LOA) was 4.7% for HR and 29.3% for RR. RMSD for SpO2 was 1.9% and 1.5°C for temperature. Agreement between Sibel’s ANNE technology and the reference technologies met the a priori-defined thresholds for 95% spread of LOA and RMSD. Clarke error grids showed that all HR and RR observations were within a 20% difference. Conclusion: Our findings suggest acceptable agreement between Sibel’s ANNE and reference technologies. Clinical effectiveness, feasibility, usability, acceptability, and cost-effectiveness investigations are necessary for large-scale implementation

    Evaluation of non-invasive continuous physiological monitoring devices for neonates in Nairobi, Kenya: a research protocol

    Get PDF
    Introduction: Continuous physiological monitoring devices are often not available for monitoring high-risk neonates in low-resource settings. Easy-to-use, non-invasive, multiparameter, continuous physiological monitoring devices could be instrumental in providing appropriate care and improving outcomes for high-risk neonates in these low-resource settings. Methods and analysis: The purpose of this prospective, observational, facility-based evaluation is to provide evidence to establish whether two existing non-invasive, multiparameter, continuous physiological monitoring devices developed by device developers, EarlySense and Sibel, can accurately and reliably measure vital signs in neonates (when compared with verified reference devices). We will also assess the feasibility, usability and acceptability of these devices for use in neonates in low-resource settings in Africa. Up to 500 neonates are enrolled in two phases: (1) a verification and accuracy evaluation phase at Aga Khan University—Nairobi and (2) a clinical feasibility evaluation phase at Pumwani Maternity Hospital in Nairobi, Kenya. Both quantitative and qualitative data are collected and analysed. Agreement between the investigational and reference devices is determined using a priori-defined accuracy thresholds. Ethics and dissemination: This trial was approved by the Aga Khan University Nairobi Research Ethics Committee and the Western Institutional Review Board. We plan to disseminate research results in peer-reviewed journals and international conferences
    • …
    corecore