34 research outputs found

    Identification of Serum Biomarkers for Intestinal Integrity in a Broiler Chicken Malabsorption Model

    Get PDF
    Intestinal health is essential for feed efficiency and growth in animal agriculture and is dependent on barrier function, inflammation and dysbiosis. Our laboratory has published a nutritional model to induce gut inflammation using rye as a source of energy in poultry. More recently, we have used this model as an assessment of a nutritional rehabilitation model for better understanding of childhood undernutrition. The objective of this brief research report was to use a well-establish malabsorption model in broiler chickens using corn and rye as an energy source to identify several intestinal health biomarkers in the serum. To screen for inflammatory biomarkers, seven commercially available tests were used including Griess, superoxide dismutase, thiobarbituric acid reactive substances, Total antioxidant capacity, extracellular-signal-regulated kinase, Citrulline, and Interferon-ɤ; total IgA from cloacal swab was also measured. In the present study, chickens fed rye had a significant (P < 0.05) reduction in body weight and body weight gain at 10 day when compared with chickens that received the corn diet. In the second phase of the experiment, chickens that remain with the corn diet had significant differences in body weight and body weight gain. No significant differences were observed for any of the four antioxidant biomarkers evaluated in the sera (P > 0.05). However, significant differences were observed in serum citrulline and IFN-ɤ, as well as in cloacal IgA, in broiler chickens fed with rye, suggesting their potential use as biomarkers to study intestinal inflammation

    Impact of a Bacillus Direct-Fed Microbial on Growth Performance, Intestinal Barrier Integrity, Necrotic Enteritis Lesions, and Ileal Microbiota in Broiler Chickens Using a Laboratory Challenge Model

    Get PDF
    Decreases in the use of antibiotics and anticoccidials in the poultry industry have risen the appearance of necrotic enteritis (NE). The purpose of this study was to evaluate the effect of a Bacillus direct-fed microbial (DFM) on growth performance, intestinal integrity, NE lesions and ileal microbiota using a previously established NE-challenged model. At day-of-hatch, chicks were randomly assigned to three different groups: Negative control (NC), Positive control (PC) challenged with Salmonella Typhimurium (day 1), Eimeria maxima (EM, day 13) and Clostridium perfringens (CP, day 18–19), and Bacillus-DFM group (DFM) challenged as the PC. Body weight (BW) and body weight gain (BWG) were measured weekly. Total feed intake (FI) and feed conversion ratio (FCR) were evaluated at day 21. Liver samples were collected to assess bacterial translocation and blood samples were used to measure superoxide dismutase (SOD) and fluorescein isothiocyanate-dextran (FITC-d). Intestinal contents were obtained for determination of total IgA and microbiota analysis. NE lesion scores (LS) were performed at day 21. Chickens consuming the DFM significantly improved BW and had a numerically more efficient FCR compared to PC at day 21. Additionally, there were no significant differences in FCR between the DFM group and NC. Furthermore, the DFM group showed significant reductions in LS, IgA and FITC-d levels compared to the PC. However, there were no significant differences in SOD between the groups. The microbiota analysis indicated that the phylum Proteobacteria was significantly reduced in the DFM group in comparison to PC. At the genus level, Clostridium, Turicibacter, Enterococcus, and Streptococcus were reduced, whereas, Lactobacillus and Bacillus were increased in the DFM group as compared to PC (p < 0.05). Likewise, the DFM significantly reduced CP as compared to PC. In contrary, no significant differences were observed in bacterial composition between NC vs. DFM. In addition, beta diversity showed significant differences in the microbial community structure between NC vs. PC, and PC vs. DFM. These results suggest that the dietary inclusion of a selected DFM could mitigate the complex negative impacts caused by NE possibly through mechanism(s) that might involve modulation of the gut microbiota

    El reencuentro con la naturaleza: voces femeninas en el tiempo

    Get PDF
    Este texto contribuye al análisis científico de diferentes áreas del conocimiento la filosofía social, la educación para el cuidado del medio ambiente mediante la sustentabilidad que incide en diversas unidades de aprendizaje en Educación para la Salud y de la Maestria en Sociología de la SaludEl relato de las voces femeninas que se escuchan en el tiempo, narran las luchas por defender un ideal, con frecuencia en la organización de las mujeres que pugnan por estabilizar el equilibrio de la naturaleza, por medio de tácticas educativas que van recorriendo el bachillerato, la normal y la universidad

    Risks Involved in the Use of Enrofloxacin for Salmonella Enteritidis or Salmonella Heidelberg in Commercial Poultry

    Get PDF
    The objectives of the present study were to evaluate the risks involved in the use of Enrofloxacin for Salmonella Enteritidis (SE) or Salmonella Heidelberg (SH) in commercial poultry and determine the effects of a probiotic as an antibiotic alternative. Two experiments were conducted to evaluate the risks involved in the use of Enrofloxacin for SE or SH in commercial poultry. Exp 1 consisted of 2 trials. In each trial, chickens were assigned to one of three groups; control + SE challenged; Enrofloxacin 25 mg/kg + SE; Enrofloxacin 50 mg/kg + SE. Chickens received Enrofloxacin in the drinking water from days 1 to 5 of age. On day 6, all groups received fresh water without any treatment. All chickens were orally gavaged with 107 cfu/chick of SE at 7 days of age and euthanized on 8 days of age. In Exp 2, turkey poults were assigned to one of the three groups; control + SH; probiotic + SH; Enrofloxacin 50 mg/kg + SH. Poults received probiotic or Enrofloxacin in the drinking water from days 1 to 5 of age. On day 6, poults received fresh water without any treatment. Poults were orally gavaged with 107 cfu/poult of SH at 7 days of age. Poults were weighted and humanely killed 24 h post-SH challenge to evaluate serum concentration of FITC-D to evaluate intestinal permeability, metagenomics and SH infection. In both trials of Exp 1, chickens treated with Enrofloxacin were more susceptible to SE organ invasion and intestinal colonization when compared with control non-treated chickens (P < 0.05). In Exp 2, poults treated with 50 mg/kg of Enrofloxacin showed an increase in body weight, however, this group also showed an increase in SH susceptibility, intestinal permeability and lower proportion of Firmicutes and Bacteroidetes, but with control group had the highest proportion of Proteobacteria. In contrast, poults that received the probiotic had the highest proportion of Firmicutes and Bacteroidetes, but lowest Proteobacteria. The results of the present study suggest that prophylactic utilization of Enrofloxacin at 5 times the recommended dose in poultry, increases the susceptibility to salmonellae infections, and confirms probiotics may be a

    Evaluation of the Epithelial Barrier Function and Ileal Microbiome in an Established Necrotic Enteritis Challenge Model in Broiler Chickens

    Get PDF
    Necrotic enteritis (NE) is a recognized multifactorial disease that cost annually to the poultry industry around $2 billion. However, diverse aspects related to its presentation are not completely understood, requiring further studies using known induction experimental models. Therefore, the purpose of this study was to measure the changes occurring in performance, intestinal integrity and ileal microbiome using a previously established NE-challenge model. Chickens were assigned to a negative control group (NC) or a positive control group (PC). In the PC, broilers were orally gavaged with Salmonella Typhimurium (ST) (1 × 107 cfu/chick) at day 1, Eimeria maxima (EM) (2.5 × 104 oocyst/chick) at day 18 and Clostridium perfringens (CP) (1 × 108 cfu/chick/day) at 23–24 days of age. Weekly, body weight (BW), body weight gain (BWG), feed intake (FI) and feed conversion ratio (FCR) were evaluated. Morbidity and mortality were determined throughout the study, and NE lesion scores were recorded at day 25. Additionally, blood and liver samples were collected to measure gut permeability as determined by levels of serum fluorescein isothiocyanate-dextran (FITC-d) and bacterial translocation (BT). Ileal contents were processed for 16S rRNA gene-based microbiome analysis. Performance parameters and intestinal permeability measurements were negatively impacted in the PC resulting in elevated serum FITC-d and BT with a −6.4% difference in BWG. The NE lesion score in PC (1.97 vs. 0.00) was significantly higher in comparison to NC, although there was no difference in mortality. The microbiome analysis showed a dramatic shift of ileal microbiomes in PC groups as compared to NC (ANOSIM: R = 0.76, P = 0.001). The shift was characterized by reduced abundance of the phylum Actinobacteria (P &lt; 0.01), and increased abundance of the genera Butyrivibrio, Lactobacillus, Prevotella and Ruminococcus in PC compared to NC (P &lt; 0.05). Expectedly, Clostridium was found higher in PC (2.98 ± 0.71%) as compared to NC (1.84 ± 0.36%), yet the difference was not significant. In conclusion, results of the present study showed the different intestinal epithelial and microbiological alterations occurring in an established NE-challenge model that considers paratyphoid Salmonella infections in young chicks as an important predisposing factor for presentation of NE

    Evaluation of Bone Marrow Adipose Tissue and Bone Mineralization on Broiler Chickens Affected by Wooden Breast Myopathy

    Get PDF
    In humans, alterations in bone metabolism have been associated with myopathies. We postulate the hypothesis that perhaps similar pathologies can also be associated in modern chickens. Hence, this study aimed to assess the fat infiltration in bone marrow and its repercussion on broiler chicken affected by Wooden Breast (WB) myopathy. Ten Cobb 500 live birds with extreme rigidity of the Pectoralis major (PM) muscle were selected as WB affected chickens by physical examination of the muscle at 49 days of age, whereas ten chickens healthy with no physical signs of hardness in the breast muscle were considered to be unaffected. Macroscopic lesions in affected chickens included areas of firm and inflamed muscle with pale appearance, hemorrhaging, and viscous exudate on the surface. Bone marrow and sections of the PM muscle were collected and analyzed for light microscopy. Additionally, transmission electron microscopy was conducted in affected or unaffected muscle. Chickens affected with WB showed significant reductions (P &lt; 0.05) in femur diameter, calcium, and phosphorous percentage but increased breast weight, compression force and filet thickness when compared with non-affected chickens. Interestingly, bone marrow from WB chicken had subjectively, more abundant infiltration of adipose tissue, when compared with non-affected chickens. Histology of the Pectoralis major of birds with WB showed abundant infiltration of adipose tissue, muscle fibers degeneration with necrosis and infiltration of heterophils and mononuclear cells, connective tissue proliferation, and vasculitis. Ultrastructural changes of WB muscle revealed lack definition of bands in muscle tissue, or any normal ultrastructural anatomy such as myofibrils. The endomysium components were necrotic, and in some areas, the endomysium was notable only as a string of necrotic tissue between degraded myofibrils. The fascia appeared hypertrophied, with large areas of necrosis and myofiber without structural identity with degraded mitochondria adjacent to the disrupted muscle tissue. As far as we know, this is the first study that describes a subjective increase in adipose tissue in the bone marrow of chickens affected with WB when compared with non-affected chickens, and reduced bone mineralization

    Assessing the effects of a mixed Eimeria spp. challenge on performance, intestinal integrity, and the gut microbiome of broiler chickens

    Get PDF
    A mixed Eimeria spp. challenge model was designed to assess the effects of challenge on broiler chicken performance, intestinal integrity, and the gut microbiome for future use to evaluate alternative strategies for controlling coccidiosis in broiler chickens. The experimental design involved broiler chickens divided into two groups: a control group (uninfected) and a positive control group, infected with Eimeria acervulina (EA), Eimeria maxima (EM), and Eimeria tenella (ET). At day-of-hatch, 240 off-sex male broiler chicks were randomized and allocated to one of two treatment groups. The treatment groups included: (1) Non-challenged (NC, n = 5 replicate pens); and (2) challenged control (PC, n = 7 replicate pens) with 20 chickens/pen. Pen weights were recorded at d0, d16, d31, d42, and d52 to determine average body weight (BW) and (BWG). Feed intake was measured at d16, d31, d42, and d52 to calculate feed conversion ratio (FCR). Four diet phases included a starter d0–16, grower d16–31, finisher d31–42, and withdrawal d42–52 diet. At d18, chickens were orally challenged with 200 EA, 3,000 EM, and 500 ET sporulated oocysts/chicken. At d24 (6-day post-challenge) and d37 (19-day post-challenge), intestinal lesion scores were recorded. Additionally, at d24, FITC-d was used as a biomarker to evaluate intestinal permeability and ileal tissue sections were collected for histopathology and gene expression of tight junction proteins. Ileal and cecal contents were also collected to assess the impact of challenge on the microbiome. BWG and FCR from d16–31 was significantly (p &lt; 0.05) reduced in PC compared to NC. At d24, intestinal lesion scores were markedly higher in the PC compared to the NC. Intestinal permeability was significantly increased in the PC group based on serum FITC-d levels. Cadherin 1 (CDH1), calprotectin (CALPR), and connexin 45 (Cx45) expression was also upregulated in the ileum of the PC group at d24 (6-day post-challenge) while villin 1 (VIL1) was downregulated in the ileum of the PC group. Additionally, Clostridium perfringens (ASV1) was enriched in the cecal content of the PC group. This model could be used to assess the effect of alternative coccidiosis control methods during the post-challenge with EA, EM, and ET

    In vitro and in vivo evaluation of chlorhexidine salts as potential alternatives to potassium dichromate for Eimeria maxima M6 oocyst preservation

    Get PDF
    IntroductionCoccidiosis caused by the Eimeria spp., an Apicomplexan protozoon, is a major intestinal disease that affects the poultry industry. Although most cases of coccidiosis are subclinical, Eimeria infections impair bird health and decrease overall performance, which can result in compromised welfare and major economic losses. Viable sporulated Eimeria oocysts are required for challenge studies and live coccidiosis vaccines. Potassium dichromate (PDC) is typically used as a preservative for these stocks during storage. Although effective and inexpensive, PDC is also toxic and carcinogenic. Chlorhexidine (CHX) salts may be a possible alternative, as this is a widely used disinfectant with less toxicity and no known carcinogenic associationsMethodsIn vitro testing of CHX gluconate and CHX digluconate exhibited comparable oocyst integrity and viability maintenance with equivalent bacteriostatic and bactericidal activity to PDC. Subsequent use of CHX gluconate or digluconate-preserved Eimeria oocysts, cold-stored at 4°C for 5 months, as the inoculum also resulted in similar oocyst shedding and recovery rates when compared to PDC-preserved oocysts.Results and discussionThese data show that using 0.20% CHX gluconate could be a suitable replacement for PDC. Additionally, autofluorescence was used as a method to evaluate oocyst viability. Administration of artificially aged oocysts exhibiting &gt;99% autofluorescence from each preserved treatment resulted in no oocyst output for CHX salt groups

    The effects of essential oil from Lippia origanoides and herbal betaine on performance, intestinal integrity, bone mineralization and meat quality in broiler chickens subjected to cyclic heat stress

    Get PDF
    Essential oils (EO) affect performance, intestinal integrity, bone mineralization, and meat quality in broiler chickens subjected to cyclic heat stress (HS). Day-of-hatch Cobb 500 male broiler chicks (n = 475) were randomly divided into four groups. Group 1: No heat stress (Thermoneutral) + control diets with no antibiotics; Group 2: heat stress control + control diets; Group 3: heat stress + control diets supplemented with thymol chemotype (45 ppm) and herbal betaine (150 ppm) formulation EO1; Group 4: heat stress + control diets supplemented with phellandrene (45 ppm) and herbal betaine (150 ppm) formulation EO2. From day 10–42, the heat stress groups were exposed to cyclic HS at 35°C for 12 h (8:00–20:00). BW, BWG, FI, and FCRc were measured at d 0, 10, 28, and 42. Chickens were orally gavaged with FITC-d on days 10 (before heat stress) and 42. Morphometric analysis of duodenum and ileum samples and bone mineralization of tibias were done. Meat quality was assessed on day 43 with ten chickens per pen per treatment. Heat stress reduced BW by day 28 (p &lt; 0.05) compared to thermoneutral chickens. At the end of the trial, chickens that received both formulations of EO1 and EO2 had significantly higher BW than HS control chickens. A similar trend was observed for BWG. FCRc was impaired by EO2 supplementation. There was a significant increase in total mortality in EO2 compared with EO1 EO1 chickens had lower FITC-d concentrations at day 42 than the HS control. In addition, EO1 treatment is not statistically different if compared to EO2 and thermoneutral. Control HS broilers had significantly lower tibia breaking strength and total ash at day 42 than heat-stressed chickens supplemented with EO1 and EO2. Heat stress affected intestinal morphology more than thermoneutral chickens. EO1 and EO2 improved intestinal morphology in heat-stressed chickens. Woody breast and white striping were more common in thermoneutral chickens than heat stress chickens. In conclusion, the EO-containing diet could improve broiler chicken growth during cyclic heat stress, becoming increasingly relevant in antibiotic-free production in harsh climates

    Food-producing animals and their health in relation to human health

    No full text
    The fields of immunology, microbiology, and nutrition converge in an astonishing way. Dietary ingredients have a profound effect on the composition of the gut microflora, which in turn regulates the physiology of metazoans. As such, nutritional components of the diet are of critical importance not only for meeting the nutrient requirements of the host, but also for the microbiome. During their coevolution, bacterial microbiota has established multiple mechanisms to influence the eukaryotic host, generally in a beneficial fashion. The microbiome encrypts a variety of metabolic functions that complements the physiology of their hosts. Over a century ago Eli Metchnikoff proposed the revolutionary idea to consume viable bacteria to promote health by modulating the intestinal microflora. The idea is more applicable now than ever, since bacterial antimicrobial resistance has become a serious worldwide problem both in medical and agricultural fields. The impending ban of antibiotics in animal feed due to the current concern over the spread of antibiotic resistance genes makes a compelling case for the development of alternative prophylactics. Nutritional approaches to counteract the debilitating effects of stress and infection may provide producers with useful alternatives to antibiotics. Improving the disease resistance of animals grown without antibiotics will benefit the animals’ health, welfare, and production efficiency, and is also a key strategy in the effort to improve the microbiological safe status of animal-derived food products (e.g. by poultry, rabbits, ruminants, or pigs). This review presents some of the alternatives currently used in food-producing animals to influence their health in relation to human health
    corecore