121 research outputs found

    The antimicrobial, mechanical, physical and structural properties of chitosan-gallic acid films

    Get PDF
    Chitosan films incorporated with various concentrations of gallic acid were prepared and investigated for antimicrobial, mechanical, physical and structural properties. Four bacterial strains that commonly contaminate food products were chosen as target bacteria to evaluate the antimicrobial activity of the prepared gallic acid-chitosan films. The incorporation of gallic acid significantly increased the antimicrobial activities of the films against Escherichia coli, Salmonella typhimurium, Listeria innocua and Bacillus subtilis. Chitosan films incorporated with 1.5 g/100 g gallic acid showed the strongest antimicrobial activity. It was also found that tensile strength (TS) of chitosan film was significantly increased when incorporating 0.5 g/100 g gallic acid. Inclusion of 0.5 g/100 g gallic acid also significantly decreased water vapor permeability (WVP) and oxygen permeability (OP). Microstructure of the films was investigated by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) and it was found that gallic acid was dispersed homogenously into the chitosan matrix

    Expression and characterization of keratinase from Deinococcus gobiensis I-0

    Get PDF
    Keratin is a nonnutritious hard protein widely distributed in feather, wool, animal hoof, horn, and toenail. The disulfide bond interacts to form a dense structure of keratin, which is difficult to be degraded and utilized. Keratinase is a kind of enzymes that can destroy the dense structure of keratin to achieve the degradation, and has a good application prospect. In order to further tap the important gene resources of keratinase, improve its hydrolytic activity,and provide theoretical basis for industrial production, this experiment cloned a gene encoding keratinase from Deinococcus gobiensis I-0 isolated from Gobi desert of Xinjiang and named it as Kerdg. Prokaryotic expression vector pET-22B-Kerdg was constructed and then induced, expressed and purified in vitro, the optimal temperature and pH of the crude enzyme solution were determined through the hydrolysis activity to feathers. Results showed that the first 50 amino acids of N terminal had a great influence on the expression and purification of protein Kerdg. The crude enzyme solution of recombinant strain completely decomposed feathers in three days. The transparent circle on milk powder plate appeared more notable in crude enzyme solution of recombinant strain than that of empty strain. Kerdg adapted to a wide range of temperatures and pH,among which the optimal temperature was 60℃ and the optimal pH was 5.0. The Kerdg can degrade feathers and thus will have great application space in the future industrial production and treatment of waste feathers. Please click Additional Files below to see the full abstract

    Effect of miller cycle and fuel injection strategy on performance of marine diesel engine

    Get PDF
    Computational fluid dynamics (CFD) is used to investigate the performance of a large two-stroke marine diesel engine. The simulated model is validated with experimental data. The in-cylinder pressure of the simulated model is in agreement with the experimental data. The errors of NOx and CO2 emissions are also within the accepted range. The effect of Miller cycle, injection sequence and pilot injection on combustion and emissions are investigated using this model. The results show that the in-cylinder pressure decreases with deeper Miller cycle level. However, NOx emissions are reduced only slightly to 8.95 g/kWh. This decrease in NOx emissions does not satisfy the requirements of Tier III. We also found that the injection interval angle between two injectors decreases the combustion pressure. However, the indicated specific fuel consumption is 7.3 g/kWh higher than the base value, when the injection interval angle is 8 °CA. Appropriate pilot injection strategy can decrease NOx emissions and indicated specific fuel consumption, such as P10I5. However, NOx emissions are not reduced sufficiently to meet the requirements of Tier III

    Biointerface topography mediates the interplay between endothelial cells and monocytes

    Get PDF
    Endothelial cell (EC) monolayers located in the inner lining of blood vessels serve as a semipermeable barrier between circulating blood and surrounding tissues. The structure and function of the EC monolayer affect the recruitment and adhesion of monocytes, which plays a pivotal role in the development of inflammation and atherosclerosis. Here we investigate the effect of material wrinkled topographies on the responses of human umbilical vein endothelial cells (HUVECs) and adhesion of monocytes to HUVECs. It is found that HUVEC responses are non-linearly mediated by surface topographies with different dimensions. Specifically, more cell elongation and better cell orientation on the wrinkled surface with a 3.5 μm amplitude and 10 μm wavelength (W10) are observed compared to other surfaces. The proliferation rate of HUVECs on the W10 surface is higher than that on other surfaces due to more 5-ethynyl-2′-deoxyuridine (EdU) detected on the W10 surface. Also, greater expression of inflammatory cytokines from HUVECs and adhesion of monocytes to HUVECs on the W10 surface is shown than other surfaces due to greater expression of p-AKT and ICAM, respectively. This study offers a new in vitro system to understand the interplay between HUVEC monolayers and monocytes mediated by aligned topographies, which may be useful for vascular repair and disease modeling for drug testing

    Computational study of NOx reduction on a marine diesel engine by application of different technologies

    Get PDF
    The simulation model of two-stroke heave fuel oil marine diesel engine was developed in this paper. The model was validated with the experimental data. The ability of NOx reduction was researched for exhaust gas recirculation, humid air motor and miller cycle based on the simulation model. The results show that the EGR has the most potential to reduce the NOx emission. It can make the quantity of NOx meet the requirement of Tier â…¢. The reduction value of NOx was less for miller cycle. The HAM can be reduced the NOx. However, the depth of HAM was limited

    A Systematic Prediction of Multiple Drug-Target Interactions from Chemical, Genomic, and Pharmacological Data

    Get PDF
    In silico prediction of drug-target interactions from heterogeneous biological data can advance our system-level search for drug molecules and therapeutic targets, which efforts have not yet reached full fruition. In this work, we report a systematic approach that efficiently integrates the chemical, genomic, and pharmacological information for drug targeting and discovery on a large scale, based on two powerful methods of Random Forest (RF) and Support Vector Machine (SVM). The performance of the derived models was evaluated and verified with internally five-fold cross-validation and four external independent validations. The optimal models show impressive performance of prediction for drug-target interactions, with a concordance of 82.83%, a sensitivity of 81.33%, and a specificity of 93.62%, respectively. The consistence of the performances of the RF and SVM models demonstrates the reliability and robustness of the obtained models. In addition, the validated models were employed to systematically predict known/unknown drugs and targets involving the enzymes, ion channels, GPCRs, and nuclear receptors, which can be further mapped to functional ontologies such as target-disease associations and target-target interaction networks. This approach is expected to help fill the existing gap between chemical genomics and network pharmacology and thus accelerate the drug discovery processes

    Quick and efficient co-treatment of Zn2+/Ni2+ and CN- via the formation of Ni(CN)4 2- intercalated larger ZnAl-LDH crystals

    Get PDF
    The wide use of metal electroplating involving CN- necessitates the cost-effective treatment of both CN and metals (Zn, Cu, Ni etc.). In this research, we developed a novel strategy - Ni2+-assisted layered double hydroxide (LDH) precipitation - to simultaneously remove aqueous CN and Zn/Ni metals. The strategy is to convert CN-/Zn(CN)(4)(2-) to Ni(CN)(4)(2-) first, and then to quickly precipitate Ni(CN)(4)(2-)/CN- into LDH crystals. The conversion has been clearly evidenced by the change of CN characteristic FTIR bands of Zn-CN solution before and after adding Ni(NO3)(2). The intercalation and efficient removal of CN have also been confirmed through the formation of LDH crystals XRD and SEM. In particular, a set of optimized experimental factors has been obtained by investigating their effects on CN removal efficiency in the simulated tests. Remarkably, over 95% CN were removed with high removal efficiencies of metals. Our results thus suggest that the current strategy is a quick, efficient and promising way to simultaneously treat both Ni and metals/CN rich electroplating wastewaters. (C) 2014 Elsevier B.V. All rights reserved

    Elevated first-trimester hepcidin level is associated with reduced risk of iron deficiency anemia in late pregnancy: a prospective cohort study

    Get PDF
    BackgroundIron deficiency (ID) and iron deficiency anemia (IDA) during pregnancy are highly prevalent worldwide. Hepcidin is considered an important biomarker of iron status. Currently, few longitudinal cohort studies have assessed the potential causal relationship between hepcidin and ID/IDA. Therefore, we aimed to investigate the association of first-trimester maternal serum hepcidin with third-trimester ID/IDA risk in a prospective cohort.MethodsTotal of 353 non-ID/IDA pregnant women at 11–13 weeks’ gestation were enrolled in Southern China and followed up to 38 weeks of gestation. Data on demography and anthropometry were obtained from a structured questionnaire at enrollment. Iron biomarkers including hepcidin were measured at enrollment and follow-up. Regression models were used to evaluate the association of first-trimester hepcidin with third-trimester ID/IDA risk.ResultsSerum hepcidin levels substantially decreased from 19.39 ng/mL in the first trimester to 1.32 ng/mL in the third trimester. Incidences of third-trimester ID and IDA were 46.2 and 11.4%, respectively. Moreover, moderate and high levels of first-trimester hepcidin were positively related to third-trimester hepcidin (log-transformed β = 0.51; 95% CI = 0.01, 1.00 and log-transformed β = 0.66; 95% CI = 0.15, 1.17). Importantly, elevated first-trimester hepcidin was significantly associated with reduced risk of third-trimester IDA (OR = 0.38; 95% CI = 0.15, 0.99), but not with ID after adjustment with potential confounders.ConclusionFirst-trimester hepcidin was negatively associated with IDA risk in late pregnancy, indicating higher first-trimester hepcidin level may predict reduced risk for developing IDA. Nonetheless, given the limited sample size, larger studies are still needed

    Ultra-low-dose spectral-detector computed tomography for the accurate quantification of pulmonary nodules: an anthropomorphic chest phantom study

    Get PDF
    PURPOSETo assess the quantification accuracy of pulmonary nodules using virtual monoenergetic images (VMIs) derived from spectral-detector computed tomography (CT) under an ultra-low-dose scan protocol.METHODSA chest phantom consisting of 12 pulmonary nodules was scanned using spectral-detector CT at 100 kVp/10 mAs, 100 kVp/20 mAs, 120 kVp/10 mAs, and 120 kVp/30 mAs. Each scanning protocol was repeated three times. Each CT scan was reconstructed utilizing filtered back projection, hybrid iterative reconstruction, iterative model reconstruction (IMR), and VMIs of 40–100 keV. The signal-to-noise ratio and air noise of images, absolute differences, and absolute percentage measurement errors (APEs) of the diameter, density, and volume of the four scan protocols and ten reconstruction images were compared.RESULTSWith each fixed reconstruction image, the four scanning protocols exhibited no significant differences in APEs for diameter and density (all P > 0.05). Of the four scan protocols and ten reconstruction images, APEs for nodule volume had no significant differences (all P > 0.05). At 100 kVp/10 mAs, APEs for density using IMR were the lowest (APE-mean: 6.69), but no significant difference was detected between VMIs at 50 keV (APE-mean: 11.69) and IMR (P = 0.666). In the subgroup analysis, at 100 kVp/10 mAs, there were no significant differences between VMIs at 50 keV and IMR in diameter and density (all P > 0.05). The radiation dose at 100 kVp/10 mAs was reduced by 77.8% compared with that at 120 kVp/30 mAs.CONCLUSIONCompared with IMR, reconstruction at 100 kVp/10 mAs and 50 keV provides a more accurate quantification of pulmonary nodules, and the radiation dose is reduced by 77.8% compared with that at 120 kVp/30 mAs, demonstrating great potential for ultra-low-dose spectral-detector CT

    PAM-1: an antimicrobial peptide with promise against ceftazidime-avibactam resistant Escherichia coli infection

    Get PDF
    IntroductionAntibiotic misuse and overuse have led to the emergence of carbapenem-resistant bacteria. The global spread of resistance to the novel antibiotic combination ceftazidime-avibactam (CZA) is becoming a severe problem. Antimicrobial peptide PAM-1 offers a novel approach for treating infections caused by antibiotic-resistant bacteria. This study explores its antibacterial and anti-biofilm activities and mechanisms against CZA-resistant Escherichia. Coli (E. coli), evaluating its stability and biosafety as well.MethodsThe broth microdilution method, growth curve analysis, crystal violet staining, scanning electron microscopy, and propidium iodide staining/N-phenyl-1-naphthylamine uptake experiments were performed to explore the antibacterial action and potential mechanism of PAM-1 against CZA-resistant E. coli. The biosafety in diverse environments of PAM-1 was evaluated by red blood cell hemolysis, and cytotoxicity tests. Its stability was further assessed under different temperatures, serum concentrations, and ionic conditions using the broth microdilution method to determine its minimum inhibitory concentration (MIC). Galleria mellonella infection model and RT-qPCR were used to investigate the in vivo antibacterial and anti-inflammatory effects.Results and discussionIn vitro antibacterial experiments demonstrated that the MICs of PAM-1 ranged from 2 to 8 μg/mL, with its effectiveness sustained for a duration of 24 h. PAM-1 exhibited significant antibiofilm activities against CZA-resistant E. coli (p < 0.05). Furthermore, Membrane permeability test revealed that PAM-1 may exert its antibacterial effect by disrupting membrane integrity by forming transmembrane pores (p < 0.05). Red blood cell hemolysis and cytotoxicity tests revealed that PAM-1 exerts no adverse effects at experimental concentrations (p < 0.05). Moreover, stability tests revealed its effectiveness in serum and at room temperature. The Galleria mellonella infection model revealed that PAM-1 can significantly improve the survival rate of Galleria mellonella (>50%)for in vivo treatment. Lastly, RT-qPCR revealed that PAM-1 downregulates the expression of inflammatory cytokines (p < 0.05). Overall, our study findings highlight the potential of PAM-1 as a therapeutic agent for CZA-resistant E. coli infections, offering new avenues for research and alternative antimicrobial therapy strategies
    • …
    corecore