50 research outputs found

    Multidepot Recycling Vehicle Routing Problem with Resource Sharing and Time Window Assignment

    No full text
    This study aims to provide tactical and operational decisions in multidepot recycling logistics networks with consideration of resource sharing (RS) and time window assignment (TWA) strategies. The RS strategy contributes to efficient resource allocation and utilization among recycling centers (RCs). The TWA strategy involves assigning time windows to customers to enhance the operational efficiency of logistics networks. A biobjective mathematical model is established to minimize the total operating cost and number of vehicles for solving the multidepot recycling vehicle routing problem with RS and TWA (MRVRPRSTWA). A hybrid heuristic algorithm including 3D k-means clustering algorithm and nondominated sorting genetic algorithm- (NSGA-) II (NSGA-II) is designed. The 3D k-means clustering algorithm groups customers into clusters on the basis of their spatial and temporal distances to reduce the computational complexity in optimizing the multidepot logistics networks. In comparison with NSGA algorithm, the NSGA-II algorithm incorporates an elitist strategy, which can improve the computational speed and robustness. In this study, the performance of the NSGA-II algorithm is compared with the other two algorithms. Results show that the proposed algorithm is superior in solving MRVRPRSTWA. The proposed model and algorithm are applied to an empirical case study in Chongqing City, China, to test their applicability in real logistics operations. Four different scenarios regarding whether the RS and TWA strategies are included or not are developed to test the efficacy of the proposed methods. The results indicate that the RS and TWA strategies can optimize the recycling services and resource allocation and utilization and enhance the operational efficiency, thus promoting the sustainable development of the logistics industry

    Role of Phosphatidylinositol 3-Kinase and Specific Protein Kinase B Isoforms in the Suppression of Apoptosis Mediated by the Abelson Protein-tyrosine Kinase.

    No full text
    Leukemogenic oncogenes, such as the Abelson protein-tyrosine kinases (PTK), disrupt the normal regulation of survival, proliferation, and differentiation in hemopoietic progenitor cells. In the absence of cytokines, hemopoietic progenitor cells die by apoptosis. Abl PTKs mediate suppression of this apoptotic response leading to aberrant survival. To investigate the mechanism of Abl PTK action, we have used an interleukin-3-dependent murine mast cell line that expresses a temperature-sensitive form of the v-ABL PTK, which is active at the permissive temperature of 32 °C and inactive at 39 °C. At the permissive temperature, these cells are resistant to apoptosis induced both by the withdrawal of the hemopoietic growth factor (interleukin-3) and the addition of cytotoxic drugs. We demonstrate that v-Abl associates with and stimulates activation of phosphatidylinositol 3-kinase (PI3K) and, crucially, that this activation results in enhanced cellular levels of the mass of the second messenger phosphatidylinositol-3,4,5-trisphosphate. Activation of PI3K leads to enhanced activity of PKB and increased levels of the anti-apoptotic protein Bcl-XL. Transfection of cells with a dominant negative PKB reduces both the Abl-stimulated PKB activity and the survival effect conferred by activation of this oncogene. Thus, PI3K and PKB are required for the anti-apoptotic effects of Abl PTK

    Identification of potential target genes and crucial pathways in small cell lung cancer based on bioinformatic strategy and human samples.

    No full text
    Small cell lung cancer (SCLC) is a carcinoma of the lungs with strong invasion, poor prognosis and resistant to multiple chemotherapeutic drugs. It has posed severe challenges for the effective treatment of lung cancer. Therefore, searching for genes related to the development and prognosis of SCLC and uncovering their underlying molecular mechanisms are urgent problems to be resolved. This study is aimed at exploring the potential pathogenic and prognostic crucial genes and key pathways of SCLC via bioinformatic analysis of public datasets. Firstly, 117 SCLC samples and 51 normal lung samples were collected and analyzed from three gene expression datasets. Then, 102 up-regulated and 106 down-regulated differentially expressed genes (DEGs) were observed. And then, functional annotation and pathway enrichment analyzes of DEGs was performed utilizing the FunRich. The protein-protein interaction (PPI) network of the DEGs was constructed through the STRING website, visualized by Cytoscape. Finally, the expression levels of eight hub genes were confirmed in Oncomine database and human samples from SCLC patients. It showed that CDC20, BUB1, TOP2A, RRM2, CCNA2, UBE2C, MAD2L1, and BUB1B were upregulated in SCLC tissues compared to paired adjacent non-cancerous tissues. These suggested that eight hub genes might be viewed as new biomarkers for prognosis of SCLC or to guide individualized medication for the therapy of SCLC

    Evolution and Modelling of the Moisture Diffusion in Walnuts during the Combination of Hot Air and Microwave–Vacuum Drying

    No full text
    To understand the moisture transfer mechanism of walnuts during the combination of hot air (HA) and microwave–vacuum (MV) drying (HA-MVD) process, the drying characteristics and moisture diffusion characteristics of walnut during HA-MVD were investigated. The results indicated that the HA-MVD of walnuts occurred mainly in the falling-rate stage. The value of effective moisture diffusivity (Deff) dropped continuously with the decrease in moisture content (MC) during the HA drying, while switching to MV drying could truncate the decrease in Deff and still maintain a high value until the end of drying. The HA temperature, MC of the transition point, microwave power, and MV thermostatic temperature have significant effects on the moisture diffusion characteristics of walnuts. The values of Deff for walnuts ranged from 2.33 × 10−9 m2/s to 6.89 × 10−8 m2/s. The third-order polynomial prediction model of Deff related to the sample MC and drying conditions was established to describe the dynamic change in the Deff of walnuts during the HA-MVD process. The application of MVD in the final stage of drying could rapidly increase the internal vapor pressure of the walnuts, accelerate the diffusion speed of the internal moisture, and re-enhance the drying rate. The findings have practical value for the development of efficient and energy-saving drying methods in the walnut industry

    Drying Kinetics and Mass Transfer Characteristics of Walnut under Hot Air Drying

    No full text
    This study was conducted to investigate the drying kinetics and internal and external mass transfer characteristics of walnuts for an understanding of the drying mechanism. The drying characteristics, mass transfer characteristics, and color of walnut during hot air drying (HAD) were investigated under different initial moisture content (IMC) (0.35, 0.39, and 0.43 g water/g wet mass) and drying temperatures (50, 60, 70, and 80 °C). The results indicated that the IMC and drying temperature both have significant effects on the drying process of walnut, showing the higher the IMC, the longer the preheating time, the smaller the effective moisture diffusivity (Deff) and mass transfer coefficient (hm), and the longer the drying time, but reverse results for drying temperature. The values of Deff and hm for walnut ranged from 4.94 × 10−10 to 1.44 × 10−9 m2/s and 1.24 × 10−7 to 3.90 × 10−7 m/s, respectively. The values of activation energy for moisture diffusion and mass transfer ranged from 21.56 to 23.35 kJ/mol and 28.92 to 33.43 kJ/mol, respectively. Multivariate linear prediction models were also established for estimating the Deff and hm as a function of the HAD process parameters. The drying temperature has a greater effect on the walnut kernel lightness than the IMC. The Verma et al model could be used to describe the HAD process of the walnut. The findings contribute to the understanding of moisture transfer mechanisms in walnuts and have practical value for the evaluation and improvement of drying systems
    corecore