50 research outputs found

    A Review of Software Reliability Testing Techniques

    Get PDF
    In the era of intelligent systems, the safety and reliability of software have received more attention. Software reliability testing is a significant method to ensure reliability, safety and quality of software. The intelligent software technology has not only offered new opportunities but also posed challenges to software reliability technology. The focus of this paper is to explore the software reliability testing technology under the impact of intelligent software technology. In this study, the basic theories of traditional software and intelligent software reliability testing were investigated via related previous works, and a general software reliability testing framework was established. Then, the technologies of software reliability testing were analyzed, including reliability modeling, test case generation, reliability evaluation, testing criteria and testing methods. Finally, the challenges and opportunities of software reliability testing technology were discussed at the end of this paper

    TNFRSF10C methylation is a new epigenetic biomarker for colorectal cancer

    Get PDF
    Background Abnormal methylation of TNFRSF10C was found to be associated with different types of cancers, excluding colorectal cancer (CRC). In this paper, the performance of TNFRSF10C methylation in CRC was studied in two stages. Method The discovery stage was involved with 38 pairs of CRC tumor and paired adjacent non-tumor tissues, and 69 pairs of CRC tumor and paired adjacent non-tumor tissues were used for the validation stage. Quantitative methylation specific PCR (qMSP) method and percentage of methylated reference (PMR) were used to test and represent the methylation level of TNFRSF10C, respectively. A dual-luciferase reporter gene experiment was conducted to evaluate the promoter activity of TNFRSF10C fragment. Results A significant association of TNFRSF10C promoter hypermethylation with CRC was found and validated (discovery stage: 24.67 Ā±Ā 7.52 vs. 3.36 Ā±Ā 0.89; PĀ =Ā 0.003; validation stage: 31.21 Ā±Ā 12.48 vs. 4.52 Ā±Ā 1.47; PĀ =Ā 0.0005). Subsequent analyses of TCGA data among 46 pairs of CRC samples further confirmed our findings (cg23965061: PĀ =Ā 4EĀ āˆ’Ā 6; cg14015044: PĀ =Ā 1EĀ āˆ’Ā 7). Dual-luciferase reporter gene assay revealed that TNFRSF10C fragment was able to significantly promote gene expression (Fold change = 2.375, PĀ =Ā 0.013). Our data confirmed that TNFRSF10C promoter hypermethylation can predict shorter overall survival of CRC patients (PĀ =Ā 0.032). Additionally, bioinformatics analyses indicated that TNFRSF10C hypermethylation was significantly associated with lower TNFRSF10C expression. Conclusion Our work suggested that TNFRSF10C hypermethylation was significantly associated with the risk of CRC

    Association between Changes in Total Antioxidant Levels and Clinical Symptom Improvement in Patients with Antipsychotic-Naive First-Episode Schizophrenia after 3 Months of Risperidone Monotherapy

    No full text
    Schizophrenia (SCZ) is associated with aberrant redox regulation in the early stages of brain development. There is growing evidence that the antioxidant defense system is closely associated with the therapeutic response to antipsychotics in SCZ patients. The aim of this study was to examine the effect of risperidone monotherapy on total antioxidant status (TAS) and the relationship between symptom improvement and changes in TAS in patients with antipsychotic-naive first-episode (ANFE) SCZ. Clinical symptoms were evaluated using the Positive and Negative Syndrome Scale (PANSS). Two hundred and forty-six ANFE patients were treated with risperidone for 3 months. PANSS and TAS levels were assessed at baseline and at a 3-month follow-up. Relative to healthy controls, ANFE patients had higher TAS levels, which increased even further during the treatment. Moreover, baseline TAS levels were a predictor of symptom reduction after risperidone treatment. In addition, there was a significant association between increased TAS levels and the decreased cognitive factor. Our findings suggest that antioxidant protection is possibly associated with clinical improvement in ANFE patients after risperidone treatment

    Predicting transcriptional responses to cold stress across plant species

    Get PDF
    Although genome-sequence assemblies are available for a growing number of plant species, gene-expression responses to stimuli have been cataloged for only a subset of these species. Many genes show altered transcription patterns in response to abiotic stresses. However, orthologous genes in related species often exhibit different responses to a given stress. Accordingly, data on the regulation of gene expression in one species are not reliable predictors of orthologous gene responses in a related species. Here, we trained a supervised classification model to identify genes that transcriptionally respond to cold stress. A model trained with only features calculated directly from genome assemblies exhibited only modest decreases in performance relative to models trained by using genomic, chromatin, and evolution/ diversity features. Models trained with data from one species successfully predicted which genes would respond to cold stress in other related species. Cross-species predictions remained accurate when training was performed in cold-sensitive species and predictions were performed in cold-tolerant species and vice versa. Models trained with data on gene expression in multiple species provided at least equivalent performance to models trained and tested in a single species and outperformed single-species models in cross-species prediction. These results suggest that classifiers trained on stress data from well-studied species may suffice for predicting gene-expression patterns in related, less-studied species with sequenced genomes

    Predicting transcriptional responses to cold stress across plant species

    Get PDF
    Although genome-sequence assemblies are available for a growing number of plant species, gene-expression responses to stimuli have been cataloged for only a subset of these species. Many genes show altered transcription patterns in response to abiotic stresses. However, orthologous genes in related species often exhibit different responses to a given stress. Accordingly, data on the regulation of gene expression in one species are not reliable predictors of orthologous gene responses in a related species. Here, we trained a supervised classification model to identify genes that transcriptionally respond to cold stress. A model trained with only features calculated directly from genome assemblies exhibited only modest decreases in performance relative to models trained by using genomic, chromatin, and evolution/diversity features. Models trained with data from one species successfully predicted which genes would respond to cold stress in other related species. Cross-species predictions remained accurate when training was performed in cold-sensitive species and predictions were performed in cold-tolerant species and vice versa. Models trained with data on gene expression in multiple species provided at least equivalent performance to models trained and tested in a single species and outperformed single-species models in cross-species prediction. These results suggest that classifiers trained on stress data from well-studied species may suffice for predicting gene-expression patterns in related, less-studied species with sequenced genomes

    In Situ Vapor Polymerization of Poly(3,4-ethylenedioxythiophene) Coated SnO<sub>2</sub>-Fe<sub>2</sub>O<sub>3</sub> Continuous Electrospun Nanotubes for Rapid Detection of Iodide Ions

    No full text
    In this work poly(3,4-ethylenedioxythiophene) (PEDOT) coated SnO2-Fe2O3 continuous nanotubes with a uniform core&#8315;shell structure have been demonstrated for rapid sensitive detection of iodide ions. The SnO2-Fe2O3 nanotubes were firstly fabricated via an electrospinning technique and following calcination process. An in situ polymerization approach was then performed to coat a uniform PEDOT shell on the surface of as-prepared SnO2-Fe2O3 nanotubes by vapor phase polymerization, using Fe2O3 on the surface of nanotubes as an oxidant in an acidic condition. The resultant PEDOT@SnO2-Fe2O3 core-shell nanotubes exhibit a fast response time (~4 s) toward iodide ion detection and a linear current response ranging from 10 to 100 &#956;M, with a detection limit of 1.5 &#956;M and sensitivity of 70 &#956;A/mM/cm2. The facile fabrication process and high sensing performance of this study can promote a wide range of potential applications in human health monitoring and biosensing systems

    Genetic polymorphisms of BDNF on cognitive functions in drug-naive first episode patients with schizophrenia

    No full text
    Brain-derived neurotrophic factor (BDNF) is reported to be involved in cognitive decline in patients with schizophrenia (SZ). Previous studies have found that cognitive deficits remain stable during the chronic disease phase in SZ, but the findings were inconsistent. The role of BDNF in cognitive deficits at different stage of illness remains unclear. This study aimed to examine the effect of BDNF polymorphisms on cognitive deficits in drug-naive first-episode (DNFE) patients and chronic patients with SZ. 262 DNFE patients, 844 chronic patients, and 1043 healthy controls were recruited to compare 4 polymorphisms in BDNF gene and cognitive function. We found that there was no significant difference in genotype and allele frequencies between SZ patients and controls. However, they were closely related to cognitive functioning. BDNF rs2030324 polymorphism played a strong role in language performance only in DNFE patients with SZ. The language index of DNFE patients with rs2030324 TT and TC genotypes was worse than that of chronic patients, but there was no significant difference in CC genotypes between DNFE and chronic patients. Rs6265 had no significant effect on cognitive functioning in patients and controls. Our result suggests BDNF gene polymorphisms were related to different domains of cognitive function at the different stage of SZ, especially language in DNFE patients.</p

    A Study of the Pressure-Induced Solidification of Polymers

    No full text
    By using a self-designed pressure-jump apparatus, we investigated the melt solidification behavior in the rapid compression process for poly-ethylene-terephthalate (PET), polyether-ether-ketone (PEEK), isotactic polypropylene (iPP), high-density polyethylene (HDPE), and the living polymer sulfur. The experimental results clearly show that crystallization could be inhibited, and some melts were solidified to the full amorphous state for PET, PEEK, and sulfur. Full amorphous PEEK that was 24 mm in diameter and 12 mm in height was prepared, which exceeded the size obtained by the melt quenching method. The bulk amorphous sulfur thus obtained exhibited extraordinarily high thermal stability, and an abnormal exothermic transition to liquid sulfur was observed at around 396 K. Since the solidification of melt is realized by changing pressure instead of temperature and is not essentially limited by thermal conductivity, it is a promising way to prepare fully amorphous polymers. In addition, novel properties are also expected in these polymers solidified by the pressure-jump within milliseconds
    corecore