42 research outputs found

    Dynamic Group Signature Scheme on Lattice with Verifier-local Revocation

    Get PDF
    The verifier-local revocation mechanism (VLR) is an ideal function of group signature. As long as the verifier knows the revocation list, he/she can verify the legitimacy of the signer, prevent the revoked user from impersonating a legitimate user for signature, ensure the timeliness of signature information and save resources. Group signature is often required to realize users\u27 dynamic addition and revocation. Therefore, an efficient lattice signature scheme with a local revocation mechanism and alter the number of users has become an important topic. In this paper, a zero-knowledge proof scheme on the lattice has been proposed. Based on it, a group signature scheme with VLR has been constructed. This scheme can effectively join and revocation without generating the key pair again. The tracking mechanism uses an encryption scheme. As long as given a correct tracking key, the signer index can be opened quickly. And this algorithm has short public key, logarithmic signature length, and efficient implementation of the VLR function

    Synthesis of 2D anatase TiO<sub>2</sub> with highly reactive facets by fluorine-free topochemical conversion of 1T-TiS<sub>2</sub> nanosheets

    Get PDF
    Two-dimensional (2D) anatase titanium dioxide (TiO(2)) is expected to exhibit different properties as compared to anatase nanocrystallites, due to its highly reactive exposed facets. However, access to 2D anatase TiO(2) is limited by the non-layered nature of the bulk crystal, which does not allow use of top-down chemical exfoliation. Large efforts have been dedicated to the growth of 2D anatase TiO(2) with high reactive facets by bottom-up approaches, which relies on the use of harmful chemical reagents. Here, we demonstrate a novel fluorine-free strategy based on topochemical conversion of 2D 1T-TiS(2) for the production of single crystalline 2D anatase TiO(2), exposing the {001} facet on the top and bottom and {100} at the sides of the nanosheet. The exposure of these faces, with no additional defects or doping, gives rise to a significant activity enhancement in the hydrogen evolution reaction, as compared to commercially available Degussa P25 TiO(2) nanoparticles. Because of the strong potential of TiO(2) in many energy-based applications, our topochemical approach offers a low cost, green and mass scalable route for production of highly crystalline anatase TiO(2) with well controlled and highly reactive exposed facets

    Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution

    Get PDF
    Metallic transition metal dichalcogenides (TMDs)1???8 are good catalysts for the hydrogen evolution reaction (HER). The overpotential and Tafel slope values of metallic phases and edges9 of two-dimensional (2D) TMDs approach those of Pt. However, the overall current density of 2D TMD catalysts remains orders of magnitude lower (~10???100 mA cm???2) than industrial Pt and Ir electrolysers (&amp;gt;1,000 mA cm???2)10,11. Here, we report the synthesis of the metallic 2H phase of niobium disulfide with additional niobium (2H Nb1+xS2, where x is ~0.35)12 as a HER catalyst with current densities of &amp;gt;5,000 mA cm???2 at ~420 mV versus a reversible hydrogen electrode. We find the exchange current density at 0 V for 2H Nb1.35S2 to be ~0.8 mA cm???2, corresponding to a turnover frequency of ~0.2 s???1. We demonstrate an electrolyser based on a 2H Nb1+ xS2 cathode that can generate current densities of 1,000 mA cm???2. Our theoretical results reveal that 2H Nb1+ xS2 with Nb-terminated surface has free energy for hydrogen adsorption that is close to thermoneutral, facilitating HER. Therefore, 2H Nb1+ xS2 could be a viable catalyst for practical electrolysers

    Carbide-Forming Groups IVB-VIB Metals: A New Territory in the Periodic Table for CVD Growth of Graphene

    No full text
    Early transition metals, especially groups IVB-VIB metals, can form stable carbides, which are known to exhibit excellent “noble-metal-like” catalytic activities. We demonstrate herein the applications of groups IVB-VIB metals in graphene growth using atmospheric pressure chemical vapor deposition technique. Similar to the extensively studied Cu, Ni, and noble metals, these transition-metal foils facilitate the catalytic growth of single- to few-layer graphene. The most attractive advantage over the existing catalysts is their perfect control of layer thickness and uniformity with highly flexible experimental conditions by in situ converting the dissolved carbons into stable carbides to fully suppress the upward segregation/precipitation effect. The growth performance of graphene on these transition metals can be well explained by the periodic physicochemical properties of elements. Our work has disclosed a new territory of catalysts in the periodic table for graphene growth and is expected to trigger more interest in graphene research

    Seed-Assisted Growth of Single-Crystalline Patterned Graphene Domains on Hexagonal Boron Nitride by Chemical Vapor Deposition

    No full text
    Vertical heterostructures based on two-dimensional layered materials, such as stacked graphene and hexagonal boron nitride (G/h-BN), have stimulated wide interest in fundamental physics, material sciences and nanoelectronics. To date, it still remains challenging to obtain high quality G/h-BN heterostructures concurrently with controlled nucleation density and thickness uniformity. In this work, with the aid of the well-defined poly(methyl methacrylate) seeds, effective control over the nucleation densities and locations of graphene domains on the predeposited h-BN monolayers was realized, leading to the formation of patterned G/h-BN arrays or continuous films. Detailed spectroscopic and morphological characterizations further confirmed that 435.7% of such monolayer graphene domains were of single-crystalline nature with their domain sizes predetermined throughout seed interspacing. Density functional theory calculations suggested that a self-terminated growth mechanism can be applied for the related graphene growth on h-BN/Cu. In turn, as constructed field-effect transistor arrays based on such synthesized single-crystalline G/h-BN patterning were found to be compatible with fabricating devices with nice and steady performance, hence holding great promise for the development of next generation graphene-based electronics.ope

    Nose-to-brain delivery of temozolomide-loaded PLGA nanoparticles functionalized with anti-EPHA3 for glioblastoma targeting

    No full text
    Glioblastoma is the most common malignant brain tumor. Efficient delivery of drugs targeting glioblastomas remains a challenge. Ephrin type-A receptor 3 (EPHA3) tyrosine kinase antibody-modified polylactide-co-glycolide (PLGA) nanoparticles (NPs) were developed to target glioblastoma via nose-to-brain delivery. Anti-EPHA3-modified, TBE-loaded NPs were prepared using an emulsion-solvent evaporation method, showed a sustained in vitro release profile up to 48 h and a mean particle size of 145.9 ± 8.7 nm. The cellular uptake of anti-EPHA3-modified NPs by C6 cells was significantly enhanced compared to that of nontargeting NPs (p < .01). In vivo imaging and distribution studies on the glioma-bearing rats showed that anti-EPHA3-modified NPs exhibited high fluorescence intensity in the brain and effectively accumulated to glioma tissues, indicating the targeting effect of anti-EPHA3. Glioma-bearing rats treated with anti-EPHA3-modified NPs resulted in significantly higher tumor cell apoptosis (p < .01) than that observed with other formulations and prolonged the median survival time of glioma-bearing rats to 26 days, which was 1.37-fold longer than that of PLGA NPs. The above results indicated that anti-EPHA3-modified NPs may potentially serve as a nose-to-brain drug carrier for the treatment of glioblastoma

    Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors

    No full text
    As the dimensions of the semiconducting channels in fieldeffect transistors decrease, the contact resistance of the metalsemiconductor interface at the source and drain electrodes increases, dominating the performance of devices(1-3). Two-dimensional (2D) transition-metal dichalcogenides such as molybdenum disulfide (MoS2) have been demonstrated to be excellent semiconductors for ultrathin field-effect transistors(4,5). However, unusually high contact resistance has been observed across the interface between the metal and the 2D transition-metal dichalcogenide(3,5-9). Recent studies have shown that van der Waals contacts formed by transferred graphene(10,11) and metals(12) on few-layered transitionmetal dichalcogenides produce good contact properties. However, van der Waals contacts between a three-dimensional metal and a monolayer 2D transition-metal dichalcogenide have yet to be demonstrated. Here we report the realization of ultraclean van der Waals contacts between 10-nanometre-thick indium metal capped with 100-nanometre-thick gold electrodes and monolayer MoS2. Using scanning transmission electron microscopy imaging, we show that the indium and gold layers form a solid solution after annealing at 200 degrees Celsius and that the interface between the gold-capped indium and the MoS2 is atomically sharp with no detectable chemical interaction between the metal and the 2D transition-metal dichalcogenide, suggesting van-der-Waals-type bonding between the gold-capped indium and monolayer MoS2. The contact resistance of the indium/gold electrodes is 3,000 +/- 300 ohm micrometres for monolayer MoS2 and 800 +/- 200 ohm micrometres for few-layered MoS2. These values are among the lowest observed for three-dimensional metal electrodes evaporated onto MoS2, enabling high-performance field-effect transistors with a mobility of 167 +/- 20 square centimetres per volt per second. We also demonstrate a low contact resistance of 220 +/- 50 ohm micrometres on ultrathin niobium disulfide (NbS2) and near-ideal band offsets, indicative of defect-free interfaces, in tungsten disulfide (WS2) and tungsten diselenide (WSe2) contacted with indium alloy. Our work provides a simple method of making ultraclean van der Waals contacts using standard laboratory technology on monolayer 2D semiconductors
    corecore