7 research outputs found

    Study on Anti-collapse Behavior of Solar Greenhouses Covering Rigid Plate under Snowstorm

    No full text
    International audienceTo analyze the effect of stressed skin action of rigid plate covering on anti-collapse behavior of solar greenhouses under snow load, the numerical simulation on the overall collapse process of single skeleton structure and 6-skeleton overall spatial structure with rigid plate covering were conducted on ANSYS. The collapse modes of solar greenhouses and snow load-displacement curves were obtained. The effects of different parameters on the anti-collapse behavior of solar greenhouses under snow load were also analyzed. The results showed that the stressed skin action of the covering could provide lateral support for the skeleton and increase integral rigidity of the structure and the bearing capacity to resist snowstorm. The lateral support of 8mm thick PC sun board equals that of 4 purlins, 10mm thick PC sun board equals 6 purlins, and 12mm thick PC sun board equals 8 purlins. It is suggested that skeleton interval is about 1m

    Element for Beam Dynamic Analysis Based on Analytical Deflection Trial Function

    No full text
    For beam dynamic finite element analysis, according to differential equation of motion of beam with distributed mass, general analytical solution of displacement equation for the beam vibration is obtained. By applying displacement element construction principle, the general solution of displacement equation is conversed to the mode expressed by beam end displacements. And taking the mode as displacement trial function, element stiffness matrix and element mass matrix for beam flexural vibration and axial vibration are established, respectively, by applying principle of minimum potential energy. After accurate integral, explicit form of element matrix is obtained. The comparison results show that the series of relative error between the solution of analytical trial function element and theoretical solution is about 1×10-9 and the accuracy and efficiency are superior to that of interpolation trial function element. The reason is that interpolation trial function cannot accurately simulate the displacement mode of vibrating beam. The accuracy of dynamic stiffness matrix method is almost identical with that of analytical trial function. But the application of dynamic stiffness matrix method in engineering is limited. The beam dynamic element obtained in this paper is analytical and accurate and can be applied in practice
    corecore