2,475 research outputs found

    Completion of the Ablowitz-Kaup-Newell-Segur integrable coupling

    Full text link
    Integrable couplings are associated with non-semisimple Lie algebras. In this paper, we propose a new method to generate new integrable systems through making perturbation in matrix spectral problems for integrable couplings, which is called the `completion process of integrable couplings'. As an example, the idea of construction is applied to the Ablowitz-Kaup-Newell-Segur integrable coupling. Each equation in the resulting hierarchy has a bi-Hamiltonian structure furnished by the component-trace identity

    Towards Realizing the Value of Labeled Target Samples: a Two-Stage Approach for Semi-Supervised Domain Adaptation

    Full text link
    Semi-Supervised Domain Adaptation (SSDA) is a recently emerging research topic that extends from the widely-investigated Unsupervised Domain Adaptation (UDA) by further having a few target samples labeled, i.e., the model is trained with labeled source samples, unlabeled target samples as well as a few labeled target samples. Compared with UDA, the key to SSDA lies how to most effectively utilize the few labeled target samples. Existing SSDA approaches simply merge the few precious labeled target samples into vast labeled source samples or further align them, which dilutes the value of labeled target samples and thus still obtains a biased model. To remedy this, in this paper, we propose to decouple SSDA as an UDA problem and a semi-supervised learning problem where we first learn an UDA model using labeled source and unlabeled target samples and then adapt the learned UDA model in a semi-supervised way using labeled and unlabeled target samples. By utilizing the labeled source samples and target samples separately, the bias problem can be well mitigated. We further propose a consistency learning based mean teacher model to effectively adapt the learned UDA model using labeled and unlabeled target samples. Experiments show our approach outperforms existing methods

    Poly[dibromidobis[μ-1-(pyridin-4-ylmeth­yl)-1H-1,2,4-triazole-κ2 N:N′]cadmium]

    Get PDF
    The title coordination polymer, [CdBr2(C8H8N4)2]n, arose from a layer-separated diffusion synthesis at room temperature. The title compound is isotypic with the I and Cl analogues. The Cd atom, located on an inversion center, is coordinated by two bromide ions and four N atoms (two from triazole rings and two from pyridyl rings) in a distorted trans-CdBr2N4 octa­hedral arrangement. The bridging 1-(4-pyridyl­meth­yl)-1H-1,2,4-triazole ligands are twisted [dihedral angle between the triazole and pyridine rings = 72.56 (13)°], affording a two-dimensional 44 sheet structure in the crystal

    Molecular mechanism of ethylene stimulation of latex yield in rubber tree (Hevea brasiliensis) revealed by de novo sequencing and transcriptome analysis

    Get PDF
    Differential expression of unigenes involved in hormone signaling in E8 and E24 compared to C samples of Hevea brasiliensis. Ethylene signalling pathway: ETR1: ETHYLENE RESPONSE 1; CTR1: CONSTITUTIVE TRIPLE RESPONSE 1; EIN2: ETHYLENE INSENSITIVE 2; EIN3: ETHYLENE INSENSITIVE 3; ERF1/2: ETHYLENE RESPONSE FACTOR 1/2; EBF1/2: EIN3 binding F-Box protein 1/2; BR signaling pathway: BRI1: Brassinosteroid-Insensitive 1; BAK1: BRI1-associated kinase 1; BKI1: BRI1 KINASE INHIBITOR 1; BSK: BR SIGNALING KINASE; BSU1: bri1 SUPPRESSOR 1; BIN2: BRASSINOSTEROID-INSENSITIVE 2; BZR1/2: BRASSINAZOLE RESISTANT 1/2; TCH: TOUCH genes; CYCD3: CYCLIN D3; GA signaling pathway: GID1: GIBBERELLIN INSENSITIVE DWARF 1; GID2: GIBBERELLIN INSENSITIVE DWARF 2; DELLAs: DELLA growth inhibitors; TF: transcriptional factor; Auxin signaling pathway: AUX1: AUXIN1; TIR1: TRANSPORT INHIBITOR RESPONSE 1; IAA: INDOLE ACETIC ACID; ARF: AUXIN RESPONSE FACTOR; SAUR: Small Auxin-Up RNA; G10H: geraniol 10-hydroxylase gene; Cytokinin signaling pathway: CRE1: CYTOKININ RESPONSE 1; AHP: histidine phosphotransfer protein; B-ARR: type-B response regulator (ARR); A-ARR: type-A response regulator (ARR); SA signalling pathway: NPR1: Non-expressor of pathogenesis-related genes 1; TGA: the bZIP transcription factors; PR1: pathogenesis related protein 1; JA signaling pathway: JAR1: JASMONATES RESISTANT 1; JA-Ile: jasmonoyl isoleucine; JAZ: Jasmonate ZIM-domain-containing protein; MYC2: a basic helix-loop-helix (bHLH) transcription factor; ORCA3: Octadecanoid-derivative Responsive Catharanthus AP2-domain gene; ABA signalling pathway: PYR1/PYLs: Pyrabactin Resistance Protein1/PYR-Like proteins; PP2Cs: protein phosphatases which fall under the category of type 2C; SnRK2: SNF1 (Sucrose-Nonfermenting Kinase1)-related protein kinase 2: ABF: ABA responsive element (ABRE) binding factors. Cells with gray border lines in the upper rows represent differentially expressed unigenes in E8 compared to C and cells with green border lines in the lower rows represent differentially expressed unigenes in E24 compared to C. Relative levels of expression are showed by a color gradient from low (blue) to high (red). (JPG 249 kb

    In vitro specific interactions revealed the infective characteristics of fungal endophytes to grapevine

    Get PDF
    In the present study a method for co-culture of fungal endophytic strains and grape cells was developed in order to study their interactions, and filter candidates for further safe inoculation in the vineyard. Analysis of morphological and physiological traits was performed by measuring the plant callus and fungal growth, plant cells viability, degree of cell oxidation and the scale of contact or its absence as reaction of the fungal endophyte to the presence of the plant callus. Accordingly, endophytic fungal strains (EFS) were classified on scale of invasion into categories (strong - medium - weak invasive), as well as the contact between the two partners (grow into - grow onto - contact - no contact) and the grape cell oxidation degree (normal (no oxidation) - light - moderate - serious). More included the dominance and distribution of EFS in the plant host, and correlation plots of physiological traits during plant callus and endophytic fungi co–culture were calculated

    Allopolyploid speciation and ongoing backcrossing between diploid progenitor and tetraploid progeny lineages in the Achillea millefolium species complex: analyses of single-copy nuclear genes and genomic AFLP

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the flowering plants, many polyploid species complexes display evolutionary radiation. This could be facilitated by gene flow between otherwise separate evolutionary lineages in contact zones. <it>Achillea collina </it>is a widespread tetraploid species within the <it>Achillea millefolium </it>polyploid complex (Asteraceae-Anthemideae). It is morphologically intermediate between the relic diploids, <it>A. setacea</it>-2x in xeric and <it>A. asplenifolia</it>-2x in humid habitats, and often grows in close contact with either of them. By analyzing DNA sequences of two single-copy nuclear genes and the genomic AFLP data, we assess the allopolyploid origin of <it>A. collina</it>-4x from ancestors corresponding to <it>A. setacea</it>-2x and <it>A. asplenifolia</it>-2x, and the ongoing backcross introgression between these diploid progenitor and tetraploid progeny lineages.</p> <p>Results</p> <p>In both the ncp<it>GS </it>and the <it>PgiC </it>gene tree, haplotype sequences of the diploid <it>A. setacea</it>-2x and <it>A. asplenifolia</it>-2x group into two clades corresponding to the two species, though lineage sorting seems incomplete for the <it>PgiC </it>gene. In contrast, <it>A. collina</it>-4x and its suspected backcross plants show homeologous gene copies: sequences from the same tetraploid individual plant are placed in both diploid clades. Semi-congruent splits of an AFLP Neighbor Net link not only <it>A. collina</it>-4x to both diploid species, but some 4x individuals in a polymorphic population with mixed ploidy levels to <it>A. setacea</it>-2x on one hand and to <it>A. collina</it>-4x on the other, indicating allopolyploid speciation as well as hybridization across ploidal levels.</p> <p>Conclusions</p> <p>The findings of this study clearly demonstrate the hybrid origin of <it>Achillea collina</it>-4x, the ongoing backcrossing between the diploid progenitor and their tetraploid progeny lineages. Such repeated hybridizations are likely the cause of the great genetic and phenotypic variation and ecological differentiation of the polyploid taxa in <it>Achillea millefolium </it>agg.</p

    Optimization of Mixed Fermentation Conditions of Oat Bran and Red Yeast Rice Powder

    Get PDF
    Oat bran was used as a substrate, and red yeast rice powder was added to provide fermented bacteria for mixed fermentation.The effective lipid-lowering ingredients in the mixture were used as evaluation index, and the fermentation process conditions (fermentation time, fermentation water pH, and amount of red yeast rice powder) were optimized by a single factor experiment.The results showed that the optimal fermentation time was 72 h, the pH of the fermentation water was 6.7, and the amount of added Monascus powder was 10 g.Under this condition, the contents of monacolin K, Monascus pigment, and β-glucan in the fermentation product were 3.76 mg/g, 27.58, and 3.31%, respectively.Compared with the raw mixture of oat bran and red yeast rice powder, monacolin K and Monascus pigments increased by 38.2% and 23.0% respectively, while β-glucan only decreased by 41.2%.The fermentation product contains three kinds of high-fat lipid-lowering ingredients at the same time, and it is meaningful for the comprehensive utilization of oat bran and the development of lipid-lowering functional foods

    (S,R,Rp)-N,N-Dimethyl-1-{2-[(1-phenyl­ethyl)amino­meth­yl]ferrocen­yl}ethanamine

    Get PDF
    The title chiral ferrocene compound, [Fe(C5H5)(C18H25N2)], contains one planar and two central chiral centers. It is of inter­est with respect to asymmetric catalysis. The absolute configuration of the planar chirality is Rp at the ferrocene group and those of the two C chiral centers are R at the CH carbon of the ethanamine unit and S at the CH carbon of the phenyl­ethyl­amino substituent. In the ferrocenyl unit, the cyclo­penta­dienyl (Cp) rings are planar, with maximum deviations of 0.002 (2) Å for the substituted and 0.008 (3) Å for the unsubstituted Cp ring. The dihedral angle between the ring planes is 2.12 (15)° and the rings are twisted slightly from an eclipsed conformation by 7.06–7.60°
    corecore