8 research outputs found

    KDM6B Elicits Cell Apoptosis by Promoting Nuclear Translocation of FOXO1 in Non-Small Cell Lung Cancer

    No full text
    Background/Aims: Non-small cell lung carcinoma (NSCLC) is the most common type of lung cancer and the cause of most cancer-related deaths. The molecular mechanisms that are involved in NSCLC development are currently not well understood. Accumulating evidence shows that histone demethylases play important roles in the regulation of pathological developmental processes in many diseases, including various types of cancers. Methods: Mitochondrial membrane potential assays, migration and invasion assays, caspase-3 and caspase-9 activity assays and western blot analysis were used in this research. Results: We found that overexpression of KDM6B, a demethylase that acts on histone H3 at lysine 27 (H3K27), inhibited cell growth by initiating mitochondria-dependent apoptosis and by attenuating the invasion-metastasis cascade in NSCLC cells. Moreover, our results showed that KDM6B directly interacted with FOXO1 and that overexpression of KDM6B promoted nuclear accumulation of FOXO1. The effects of KDM6B on cell apoptosis and metastasis were weakened by knockdown of FOXO1 expression. On the contrary, knocking down expression of KDM6B inhibited cell apoptosis and promoted cell growth by mitigating the nuclear translocation of FOXO1 in NSCLC cells. Conclusions: These findings suggest that KDM6B may act in a pro-apoptotic role in NSCLC by causing the nuclear translocation of FOXO1

    STAT3-mediated upregulation of lncRNA HOXD-AS1 as a ceRNA facilitates liver cancer metastasis by regulating SOX4

    No full text
    Abstract Background Several of the thousands of human long noncoding RNAs (lncRNAs) have been functionally characterized, yet their potential involvement in hepatocellular carcinoma (HCC) remains poorly understood. Methods LncRNA-HOXD-AS1 was identified by microarray and validated by real-time PCR. The clinicopathological significance of HOXD-AS1 was analyzed by Kaplan-Meier method. Chromatin immunoprecipitation was conducted to examine the mechanism of HOXD-AS1 upregulation. The role of HOXD-AS1 in HCC cells was assessed both in vitro and in vivo. ceRNA function of HOXD-AS1 was evaluated by RNA immunoprecipitation and biotin-coupled miRNA pull down assays. Results In this study, we found that HOXD-AS1 was significantly upregulated in HCC tissues. Clinical investigation demonstrated high expression level of HOXD-AS1 was associated with poor prognosis and high tumor node metastasis stage of HCC patients, and was an independent risk factor for survival. Moreover, our results revealed that STAT3 could specifically interact with the promoter of HOXD-AS1 and activate HOXD-AS1 transcription. Knockdown of HOXD-AS1 significantly inhibited migration and invasion of HCC cells in vitro and distant lung metastasis in vivo. Additionally, HOXD-AS1 was enriched in the cytoplasm, and shared miRNA response elements with SOX4. Overexpression of HOXD-AS1 competitively bound to miR-130a-3p that prevented SOX4 from miRNA-mediated degradation, thus activated the expression of EZH2 and MMP2 and facilitated HCC metastasis. Conclusions In summary, HOXD-AS1 is a prognostic marker for HCC patients and it may play a pro-metastatic role in hepatocarcinogenesis

    Additional file 10: Figure S6. of STAT3-mediated upregulation of lncRNA HOXD-AS1 as a ceRNA facilitates liver cancer metastasis by regulating SOX4

    No full text
    Putative binding sites of HOXD-AS1 and SOX4 with miR-130a-3p. (A) Expression of potential miRNAs in HCC in TCGA cohorts. (B) Comparison summary of miR-130a-3p target sites in HOXD-AS1 and SOX4. The red nucleotides (target sites) were deleted in the mutant constructs. (C) pGL3 luciferase reporter constructs containing wild type and mutated putative binding sites of HOXD-AS1 or SOX4 transcripts were shown. (TIF 1598 kb
    corecore