7 research outputs found
Estimating perfluorocarbon emission factors for industrial rare earth metal electrolysis
Rare earth (RE) metals have been widely applied in new materials, leading to their drastic production increase in the last three decades. In the production process featured by the molten-fluoride electrolysis technology, perfluorocarbon (PFC) emissions are significant and therefore deserve full accounting in greenhouse gas (GHG) emission inventories. Yet, in the ‘2006 IPCC Guidelines for National Greenhouse Gas Inventories’, no method currently exists to account for PFC emissions from rare earth metal production. This research aims to determine emission factors for industrial rare earth metals production through on-site monitoring and lab analysis of PFC concentrations in the exhaust gases from rare earth metal electrolysis. Continuous FTIR measurements and time-integrated samples (analysed off-site by high-precision Medusa GC–MS) were conducted over 24–60 h periods from three rare earth companies in China, covering production of multiple rare earth metals/alloys including Pr-Nd, La and Dy-Fe. The study confirmed that PFC emissions are generated during electrolysis, typically in the form of CF4 (∼90% wt of detected PFCs), C2F6 (∼10%) and C3F8 (<1%); trace levels of c-C4F8 and C4F10 were also detected. In general, PFC emission factors vary with rare earth metal produced and from one facility to another, ranging from 26.66 to 109.43 g/t-RE for CF4 emissions, 0.26 to 10.95 g/t-RE for C2F6, and 0.03 to 0.27 g/t-RE for C3F8. Converted to 211.60 to 847.41 kg CO2-e/t-RE for total PFCs, this emissions intensity for rare earths electrolysis is of lower (for most RE production) or similar (Dy-Fe production) level of magnitude to industrial aluminium electrolysis
Experimental and Numerical Studies on Static Aeroelastic Behaviours of a Forward-Swept Wing Model
The static aeroelastic behaviours of a flat-plate forward-swept wing model in the vicinity of static divergence are investigated by numerical simulations and wind tunnel tests. A medium fidelity model based on the vortex lattice method (VLM) and nonlinear structural analysis is proposed to calculate the displacements of the wing structure with large deformation. Follower forces effect and geometric nonlinearity are considered to calculate the deformation of the wing by finite element method (FEM). In the wind tunnel tests, the divergence dynamic pressure is predicted by the Southwell method, and the static aeroelastic displacement is measured by a photogrammetric method. The results obtained by the medium fidelity model calculations show reasonable agreement with wind tunnel test results. A high fidelity model based on coupled computational fluid dynamics (CFD) and computational structural dynamics (CSD) predicts better results of the wing tip displacement when the freestream dynamic pressure is approaching the divergence dynamic pressure