44 research outputs found

    Sparse Voltage Measurement-Based Fault Location Using Intelligent Electronic Devices

    Get PDF
    This paper proposes a fault-section location method based on sparse measurements, aimed at asymmetrical faults. A virtual current vector is defined to indicate the faulted section, which is sufficiently sparse except that the fault position corresponding entries are nonzero. To simplify the algorithm, the virtual vector is fixed by amplitudes of voltages and impedances and the feasibility is demonstrated. The Bayesian Compressive Sensing theory is introduced to reduce the number of required intelligent electronic devices (IEDs). In addition, the minimal number of IEDs and their allocation are discussed. The performance of the proposed method is validated in a 69-bus, 12.66 kV distribution system with six distributed generations (DGs) in response to various fault scenarios. The simulation results show that the method is robust for single-phase, double-phase, and double-phase to ground faults with high resistance under noisy condition. Furthermore, the method is applicable for networks with inverter interfaced DGs

    Effect of rs1344706 in the ZNF804A gene on the brain network.

    Get PDF
    ZNF804A rs1344706 (A/C) was the first SNP that reached genome-wide significance for schizophrenia. Recent studies have linked rs1344706 to functional connectivity among specific brain regions. However, no study thus far has examined the role of this SNP in the entire functional connectome. In this study, we used degree centrality to test the role of rs1344706 in the whole-brain voxel-wise functional connectome during the resting state. 52 schizophrenia patients and 128 healthy controls were included in the final analysis. In our whole-brain analysis, we found a significant interaction effect of genotype Ã— diagnosis at the precuneus (PCU) (cluster size = 52 voxels, peak voxel MNI coordinates: x = 9, y = - 69, z = 63, F = 32.57, FWE corrected P < 0.001). When we subdivided the degree centrality network according to anatomical distance, the whole-brain analysis also found a significant interaction effect of genotype Ã— diagnosis at the PCU with the same peak in the short-range degree centrality network (cluster size = 72 voxels, F = 37.29, FWE corrected P < 0.001). No significant result was found in the long-range degree centrality network. Our results elucidated the contribution of rs1344706 to functional connectivity within the brain network, and may have important implications for our understanding of this risk gene's role in functional dysconnectivity in schizophrenia

    Risk variants in the S100B gene, associated with elevated S100B levels, are also associated with visuospatial disability of schizophrenia

    Full text link
    Rs9722 and rs1051169 have been reported as affecting the levels of S100B in the serum or the brain, and haplotypes containing these two SNPs have been associated with schizophrenia. The current study investigated the role of the S100B gene in an endophenotype of schizophrenia-spatial disability. 304 schizophrenia patients and 196 healthy controls were given a block design task and a mental rotation task. Results showed that the two aforementioned SNPs and related haplotypes were associated with the spatial disability of schizophrenia patients. Specifically, risk factors for the elevated S100B levels, including the A allele of rs9722, the G allele of rs1051169, and the AG haplotype, were associated with a poorer performance on both tests of spatial ability, especially the mental rotation task. These results implicate a role for S100B gene polymorphisms in the cognitive functions of schizophrenia patients and encourage further investigation into spatial disability as an endophenotype of schizophrenia

    Sex determines which section of the SLC6A4 gene is linked to obsessive–compulsive symptoms in normal Chinese college students

    Full text link
    Previous case-control and family-based association studies have implicated the SLC6A4 gene in obsessive-compulsive disorder (OCD). Little research, however, has examined this gene's role in obsessive-compulsive symptoms (OCS) in community samples. The present study genotyped seven tag SNPs and two common functional tandem repeat polymorphisms (5-HTTLPR and STin2), which together cover the whole SLC6A4 gene, and investigated their associations with OCS in normal Chinese college students (N = 572). The results revealed a significant gender main effect and gender-specific genetic effects of the SLC6A4 gene on OCS. Males scored significantly higher on total OCS and its three dimensions than did females (ps < .01). The 5-HTTLPR in the promoter region showed a female-specific genetic effect, with the l/l and l/s genotypes linked to higher OCS scores than the s/s genotype (ps < .05). In contrast, a conserved haplotype polymorphism (rs1042173| rs4325622| rs3794808| rs140701| rs4583306| rs2020942) covering from intron 3 to the 3' UTR of the SLC6A4 gene showed male-specific genetic effects, with the CGAAGG/CGAAGG genotype associated with lower OCS scores than the other genotypes (ps < .05). These effects remained significant after controlling for OCS-related factors including participants' depressive and anxiety symptoms as well as stressful life events, and correction for multiple tests. These results are discussed in terms of their implications for our understanding of the sex-specific role of the different sections of the SLC6A4 gene in OCD

    Holographic entanglement entropy and subregion complexity for excited states of holographic superconductors

    No full text
    We investigate the holographic entanglement entropy (HEE) and the holographic subregion complexity (HSC) for holographic superconductors, both in the Einstein and in the Einstein-Gauss-Bonnet gravitational theories. For both ground and excited states, we show that, in the Einstein gravity, the HSC decreases as the temperature increases and the normal phase has a smaller HSC than the superconducting phase, which is opposite to the behavior of the HEE. Moreover, we find out that, for a given temperature T in the superconducting phase, the higher excited state leads to a lager value of the HEE but a smaller value of the HSC. However, the Einstein-Gauss-Bonnet gravity has significantly different effect on the HSC, while the HEE always increases monotonously as the temperature increases and its value in the normal phase always larger than that in the superconducting phase. Our results indicate that the HEE and HSC provide richer physics in phase transitions and condensation of scalar hair for holographic superconductors with excited states

    The Application of NdFeB in the Magnetic Force Actuator

    No full text
    In this paper, NdFeB is used to design a new type of magnetic force actuator (MFA) with simple structure and high reliability. The permanent magnets are fixed on the static iron-core to generate a magnetic field, while the movable part locates within the magnetic field. It can drive the arc extinguishing unit powered by the Lorentz force, and this can be applied to the operation of the long-stroke high voltage circuit breaker (HVCB). At the open and closed position, the PMs generate holding force for the moving iron-core to keep the static state. Then, the finite element method(FEM) and prototype test are adopted to study the properties of PM and characteristics of the actuator. The simulation concludes that the material type and structure size of PM, end cap material and processing deviation of the actuator will impact the static characteristic of the actuator. The results of the test on prototype show that MFA using NdFeB can achieve the high power output, which is conductive for electronic control as well as the displacement tracking. Due to its stable performance, NdFeB is reliable in the running of the magnetic force actuator. DOI: http://dx.doi.org/10.11591/telkomnika.v10i6.141
    corecore