9 research outputs found

    The Size Screening Could Greatly Degrade the Health Risk of Fish Consuming Associated to Metals Pollution—An Investigation of Angling Fish in Guangzhou, China

    No full text
    Fish size can heavily impact the bioaccumulation of metals, but it was rarely applied to screen out the fish with low health risk for consuming. Given the widespread metals contamination of angling fish, the angling fish collected from Guangzhou, China, were taken as an example in this study. The screening length and weight were detailed in accordance with the investigation of metals contamination among angling fish. Importantly, the feasibility of size screening on mitigating the health risk of angling fish was evaluated. The results revealed that the concentration of Cr and As were relatively high and beyond the maximum residue limit (MRL) in some fish. The mean pollution index (Pi) of As, Cr, and Pb were beyond 0.2, suggesting the widespread minor contamination. The total metal pollution index (MPI) manifested Oreochroms mossambcus was the most contaminated. The target hazard quotient (THQ) of Cr, As, and Hg were relatively higher, but the higher probability of THQ > 1 indicated the health risk should be dominantly from As. The highest TTHQ suggested the highest risk of Oreochroms mossambcus. Regression analysis determined the fish of THQ < 1 should be more likely centralized in the size that is beyond 13.7 cm and 45.0 g for adults and 19.8 cm and 127.9 g for children. Significantly reducing THQ among these screened fish confirmed their effect on the degrading health risk of metals; particularly, the children’s THQ returned below 1. The commonly contaminated Oreochroms mossambcus was further excluded to remove the screened fish with THQ > 1; the further decrease in THQ confirmed that the exclusion of a contaminated species could improve the effect of size screening

    The Bioaccumulation and Health Risk Assessment of Metals among Two Most Consumed Species of Angling Fish (Cyprinus carpio and Pseudohemiculter dispar) in Liuzhou (China): Winter Should Be Treated as a Suitable Season for Fish Angling

    No full text
    Wild fish caught by anglers were validated to be commonly polluted by metals, but their contamination status could be varied with changing seasons. To determine the seasonal variation in metal pollution and health risks in these fish, this study took Liuzhou City as an example to investigate the concentrations of eight metals in two dominant angling fishes (Cyprinus carpio and Pseudohemiculter dispar) collected, respectively, in winter and summer. The obtained results suggested the mean concentrations of metals in fish are overall lower in winter. Only Cr, Zn, and Cd in some fish were beyond the thresholds in summer. The significant correlations between fish length and weight and most metals suggested the biological dilution effect could exert its influence in winter. The similar distribution of metals in winter suggested that metal bioaccumulation should be manipulated by living habitats, while the inconsistent distribution of metals in summer may be related to the variation in feeding behavior. The metal pollution index (Pi) values were all below 0.2 in winter, which suggested no metal contamination in fish, but most fish were found to be mostly contaminated by Cr and Cd in summer, which was confirmed by their Pi > 0.2. The fish could be consumed freely in winter due to the total target hazard quotient (TTHQ) below 1, while the consumption of fish was not entirely safe in summer, particularly for children, due to TTHQ values that were generally beyond 1. Given the higher weekly recommended consumption of fish in winter, winter should be treated as a suitable season for fish angling

    The Size Screening Could Greatly Degrade the Health Risk of Fish Consuming Associated to Metals Pollution—An Investigation of Angling Fish in Guangzhou, China

    No full text
    Fish size can heavily impact the bioaccumulation of metals, but it was rarely applied to screen out the fish with low health risk for consuming. Given the widespread metals contamination of angling fish, the angling fish collected from Guangzhou, China, were taken as an example in this study. The screening length and weight were detailed in accordance with the investigation of metals contamination among angling fish. Importantly, the feasibility of size screening on mitigating the health risk of angling fish was evaluated. The results revealed that the concentration of Cr and As were relatively high and beyond the maximum residue limit (MRL) in some fish. The mean pollution index (Pi) of As, Cr, and Pb were beyond 0.2, suggesting the widespread minor contamination. The total metal pollution index (MPI) manifested Oreochroms mossambcus was the most contaminated. The target hazard quotient (THQ) of Cr, As, and Hg were relatively higher, but the higher probability of THQ > 1 indicated the health risk should be dominantly from As. The highest TTHQ suggested the highest risk of Oreochroms mossambcus. Regression analysis determined the fish of THQ Oreochroms mossambcus was further excluded to remove the screened fish with THQ > 1; the further decrease in THQ confirmed that the exclusion of a contaminated species could improve the effect of size screening

    Spatial Distribution, Source Analysis and Health Risk Study of Heavy Metals in the Liujiang River Basin in Different Seasons

    No full text
    Three high-frequency sampling and monitoring experiments were performed at the Lutang and Luowei transects of the Liujiang River entrance and at the southeast exit of the Liuzhou during 2019 for the purpose of assessing physico-chemical variables and human health hazards of water heavy metals in different rainfall processes. There were significant seasonal variations in concentrations of 11 heavy metals and most variables showed higher levels during the dry season. The distribution of heavy metals in the Liuzhou area varied significantly by region. Pollution source analysis indicated distinct seasons of wetness and dryness. The dry season is dominated by anthropogenic activities, while the wet season is dominated by natural processes. The results of hazard quotient (HQ) and carcinogenic risk (CR) analysis showed that the health risk of non-carcinogenic heavy metals in the wet season is slightly higher than that in the dry season. Seasonal changes in carcinogenic risk are the opposite; this is due to the combined influence of natural and human activities on the concentration of heavy metals in the river. Among them, Al was the most important pollutant causing non-carcinogenic, with As being a significant contributor to carcinogenic health risk. Spatially, the downstream Luowei transect has a high health risk in both the dry and rainy seasons, probably due to the fact that the Luowei transect is located within a major industrial area in the study area. There are some input points for industrial effluent discharge in the area. Therefore, high-frequency monitoring is essential to analyze and reduce the heavy metal concentrations in the Liujiang River during dry and wet seasons in order to protect the health of the residents in the area

    The Ecological Healthcare Benefits and Influences of Plant Communities in Urban Wetland Parks

    No full text
    Plant communities in urban wetland parks (UWP) have significant eco-healthcare benefits in terms of regulating the climate and improving the human living environment. However, factors influencing the regulation of eco-healthcare benefits are unclear. Taking Huaxi Ten Mile Beach National Urban Wetland Park as an example, the urban wetland park comprehensive healthcare index (UPCHI) was constructed based on an outdoor survey and indoor analysis to evaluate the UWP’s eco-healthcare benefits. Pathway analysis was used to investigate how climatic, geographic, and plant factors interact to affect the UPCHI. The results show that, over the whole year, tree–shrub–herb showed the best performance in terms of reducing PM2.5, PM10, and noise, as well as raising negative air ion concentrations; however, human comfort performed the worst. The UPCHI was generally beyond level ⅱ (0.49–0.58) in the spring and summer, indicating that there are eco-healthcare benefits. Overall, the deciduous tree–shrub–herb community had the highest annual mean UPCHI, and more than half of the plant communities’ eco-healthcare benefits were class Ⅱ, which is very beneficial for eco-healthcare. The main direct factors on UPCHI were illumination intensity (0.68) and tree height (0.90), while canopy height (0.64–0.59) and tree crown radius/canopy height (0.72–0.14) directly or indirectly influenced UPCHI. The distance from the edge of the mountain (−0.39–−0.322) had a direct negative, but minor, effect on UPCHI. This study will assist residents with selecting suitable times and places for wetland recreation and healthcare activities, and it offers a valuable reference for the future planning and design of UWP plant communities

    A Biocatalytic Platform for Synthesis of Chiral α-Trifluoromethylated Organoborons

    No full text
    There are few biocatalytic transformations that produce fluorine-containing molecules prevalent in modern pharmaceuticals. To expand the scope of biocatalysis for organofluorine synthesis, we have developed an enzymatic platform for highly enantioselective carbene B–H bond insertion to yield versatile α-trifluoromethylated (α-CF3) organoborons, an important class of organofluorine molecules that contain stereogenic centers bearing both CF3 and boron groups. In contrast to current ‘carbene transferase’ enzymes that use a limited set of simple diazo compounds as carbene precursors, this system based on Rhodothermus marinus cytochrome c (Rma cyt c) can accept a broad range of trifluorodiazo alkanes and deliver versatile chiral α-CF3 organoborons with total turnovers up to 2870 and enantiomeric ratios up to 98.5:1.5. Computational modeling reveals that this broad diazo scope is enabled by an active site environment that directs the alkyl substituent on the heme CF3-carbene intermediate towards the solvent-exposed face, thereby allowing the protein to accommodate diazo compounds with diverse structural features.</p
    corecore