15 research outputs found

    Experimental investigation on the exhaust emissions and performance of a hybrid electric motor coupled with an energy recovery system

    No full text
    In developing countries, scooters and motorcycles are widely used for daily transportation, which emit a huge NOx, HC, CO, particle matter emissions, causing serious pollution as well as heath issues, such as coughs, itchy or burning eyes, and respiratory health problems. In this study, emissions characteristics and energy recovery efficiency of a scooter powered by a hybrid powertrain propulsion system were comprehensively investigated according to the standard test cycle. The results indicated that the NOx, HC, and CO emissions of the scooter powered by hybrid powertrain were 90.86%, 61.14% and 59.37% lower than those by pure gasoline engine. In addition, the energy recovery of the scooter powered by hybrid powertrain coupled with regenerative braking system was exceeded 0.45 kW by using the electric motor under the deceleration operating conditions. The energy recovery efficiency of the scooter powered by hybrid powertrain was 6.1%. Furthermore, the fuel consumption values per 100 km distance travelled by the scooter under the hybrid powertrain and pure gasoline engine were 2.202 L and 2.009 L, respectively, which corresponded to a fuel reduction rate of 8.76% for the scooter powered by hybrid powertrain propulsion system

    Nitrogen Oxides and Ammonia Removal Analysis Based on Three-Dimensional Ammonia-Diesel Dual Fuel Engine Coupled with One-Dimensional SCR Model

    No full text
    Ammonia, as an alternative fuel for internal combustion engines, can achieve nearly zero carbon emissions. Although the development of the pure ammonia engine is limited by its poor combustion characteristics, ammonia–hydrocarbon mixed combustion can effectively improve the combustion of ammonia fuel. With the increase in the ammonia fuel proportion in the fuel mixture, a large number of nitrogen oxides (NOX) and unburned ammonia may be discharged, which have a poor impact on the environment. In this study, the performance of selective catalytic reduction (SCR) aftertreatment technology in reducing NOX and ammonia emissions from ammonia–diesel dual-fuel engines was investigated using simulation. A good cross-dimensional model was established under the coupling effect, though the effect of a single-dimensional model could not be presented. The results show that when the exhaust gas in the engine cylinder is directly introduced into the SCR without additional reducing agents such as urea, unburned ammonia flowing into SCR model is in excess, and there will be only ammonia at the outlet; however, if the unburned ammonia fed into the SCR model is insufficient to reduce NO, the ammonia concentration at the outlet will be 0. NOX can be 100% effectively reduced to N2 under most engine conditions; thus, unburned ammonia in exhaust plays a role in reducing NOX emissions from ammonia–diesel dual-fuel engines. However, when the concentration of unburned ammonia in the exhaust gas of an ammonia–diesel dual-fuel engine is large, its ammonia emissions are still high even after the SCR. In addition, the concentrations of N2O after SCR do not decrease, but increase by 50.64 in some conditions, the main reason for which is that by the action of the SCR catalyst, NO2 is partially converted into N2O, resulting in an increase in its concentration at the SCR outlet. Adding excessive air or oxygen into the SCR aftertreatment model can not only significantly reduce the ammonia concentration at the outlet of the model without affecting the NOX conversion efficiency of SCR, but inhibit N2O production to some extent at the outlet, thus reducing the unburned ammonia and NOX emissions in the tail gas of ammonia–diesel dual-fuel engines at the same time without the urea injection. Therefore, this study can provide theoretical guidance for the design of ammonia and its mixed-fuel engine aftertreatment device, and provide technical support for reducing NOX emissions of ammonia and its mixed fuel engines

    Heterogenic transplantation of bone marrow-derived rhesus macaque mesenchymal stem cells ameliorates liver fibrosis induced by carbon tetrachloride in mouse

    No full text
    Liver fibrosis is a disease that causes high morbidity and has become a major health problem. Liver fibrosis can lead to the end stage of liver diseases (livercirrhosisand hepatocellularcarcinoma). Currently, liver transplantation is the only effective treatment for end-stage liver disease. However, the shortage of organ donors, high cost of medical surgery, immunological rejection and transplantation complications severely hamper liver transplantation therapy. Mesenchymal stem cells (MSCs) have been regarded as promising cells for clinical applications in stem cell therapy in the treatment of liver diseases due to their unique multipotent differentiation capacity, immunoregulation and paracrine effects. Although liver fibrosis improvements by MSC transplantation in preclinical experiments as well as clinical trials have been reported, the in vivo fate of MSCs after transportation and their therapeutic mechanisms remain unclear. In this present study, we isolated MSCs from the bone marrow of rhesus macaques. The cells exhibited typical MSC markers and could differentiate into chondrocytes, osteocytes, and adipocytes, which were not affected by labeling with enhanced green fluorescent protein (EGFP). The harvested MSCs respond to interferon-γ stimulation and have the ability to inhibit lymphocyte proliferation in vitro. EGFP-labeled MSCs (1 × 106 cells) were transplanted into mice with carbon tetrachloride-induced liver fibrosis via tail vein injection. The ability of the heterogenic MSC infusion to ameliorate liver fibrosis in mice was evaluated by a blood plasma chemistry index, pathological examination and liver fibrosis-associated gene expression. Additionally, a small number of MSCs that homed and engrafted in the mouse liver tissues were evaluated by immunofluorescence analysis. Our results showed that the transplantation of heterogenic MSCs derived from monkey bone marrow can be used to treat liver fibrosis in the mouse model and that the paracrine effects of MSCs may play an important role in the improvement of liver fibrosis
    corecore