20,251 research outputs found

    Study of weakly-bound odd-A nuclei with quasiparticle blocking

    Full text link
    The coordinate-space Hartree-Fock-Bogoliubov (HFB) approach with quasiparticle blocking has been applied to study the odd-A weakly bound nuclei 17,19^{17,19}B and 37^{37}Mg, in which halo structures have been reported in experiments. The Skyrme nuclear forces SLy4 and UNEDF1 have been adopted in our calculations. The results with and without blocking have been compared to demonstrate the emergence of deformed halo structures due to blocking effects. In our calculations, 19^{19}B and 37^{37}Mg have remarkable features of deformed halos.Comment: 7 pages, 4 figures, 1 tabl

    A Quadratically Regularized Functional Canonical Correlation Analysis for Identifying the Global Structure of Pleiotropy with NGS Data

    Full text link
    Investigating the pleiotropic effects of genetic variants can increase statistical power, provide important information to achieve deep understanding of the complex genetic structures of disease, and offer powerful tools for designing effective treatments with fewer side effects. However, the current multiple phenotype association analysis paradigm lacks breadth (number of phenotypes and genetic variants jointly analyzed at the same time) and depth (hierarchical structure of phenotype and genotypes). A key issue for high dimensional pleiotropic analysis is to effectively extract informative internal representation and features from high dimensional genotype and phenotype data. To explore multiple levels of representations of genetic variants, learn their internal patterns involved in the disease development, and overcome critical barriers in advancing the development of novel statistical methods and computational algorithms for genetic pleiotropic analysis, we proposed a new framework referred to as a quadratically regularized functional CCA (QRFCCA) for association analysis which combines three approaches: (1) quadratically regularized matrix factorization, (2) functional data analysis and (3) canonical correlation analysis (CCA). Large-scale simulations show that the QRFCCA has a much higher power than that of the nine competing statistics while retaining the appropriate type 1 errors. To further evaluate performance, the QRFCCA and nine other statistics are applied to the whole genome sequencing dataset from the TwinsUK study. We identify a total of 79 genes with rare variants and 67 genes with common variants significantly associated with the 46 traits using QRFCCA. The results show that the QRFCCA substantially outperforms the nine other statistics.Comment: 64 pages including 12 figure

    Navigation in a small world with local information

    Full text link
    It is commonly known that there exist short paths between vertices in a network showing the small-world effect. Yet vertices, for example, the individuals living in society, usually are not able to find the shortest paths, due to the very serious limit of information. To theoretically study this issue, here the navigation process of launching messages toward designated targets is investigated on a variant of the one-dimensional small-world network (SWN). In the network structure considered, the probability of a shortcut falling between a pair of nodes is proportional to r−αr^{-\alpha}, where rr is the lattice distance between the nodes. When α=0\alpha =0, it reduces to the SWN model with random shortcuts. The system shows the dynamic small-world (SW) effect, which is different from the well-studied static SW effect. We study the effective network diameter, the path length as a function of the lattice distance, and the dynamics. They are controlled by multiple parameters, and we use data collapse to show that the parameters are correlated. The central finding is that, in the one-dimensional network studied, the dynamic SW effect exists for 0≤α≤20\leq \alpha \leq 2. For each given value of α\alpha in this region, the point that the dynamic SW effect arises is ML′∼1ML^{\prime}\sim 1, where MM is the number of useful shortcuts and L′L^{\prime} is the average reduced (effective) length of them.Comment: 10 pages, 5 figures, accepted for publication in Physical Review

    Positive-partial-transpose distinguishability for lattice-type maximally entangled states

    Full text link
    We study the distinguishability of a particular type of maximally entangled states -- the "lattice states" using a new approach of semidefinite program. With this, we successfully construct all sets of four ququad-ququad orthogonal maximally entangled states that are locally indistinguishable and find some curious sets of six states having interesting property of distinguishability. Also, some of the problems arose from \cite{CosentinoR14} about the PPT-distinguishability of "lattice" maximally entangled states can be answered.Comment: It's rewritten. We deleted the original section II about PPT-distinguishability of three ququad-ququad MESs. Moreover, we have joined new section V which discuss PPT-distinguishability of lattice MESs for cases t=3t=3 and t=4t=4 . As a result, the sequence of the theorems in our article has been changed. And we revised the title of our articl
    • …
    corecore