34 research outputs found

    Mechanism underlying synergic activation of Tyrosinase promoter by MITF and IRF4

    Get PDF
    Background: The transcription factor interferon regulatory factor 4 (IRF4) was identified to be involved in human pigmentation by genome-wide association studies (GWASs). The rs12203592-[T/C], which is located in intron 4 of IRF4, shows the strongest link to these pigmentation phenotypes including freckling, sun sensitivity, eye and hair color. Previous studies indicated a functional cooperation of IRF4 with Microphthalmia-associated transcription factor (MITF), a causing gene of Waardenburg syndrome (WS), to synergistically trans-activate Tyrosinase (TYR). However, the underlying mechanism is still unknown. Methods: To investigate the importance of DNA binding in the synergic effect of IRF4. Reporter plasmids with mutant TYR promoters was generated to locate the IRF4 DNA binding sites in the Tyrosinase minimal promoter. By building MITF and IRF4 truncated mutations plasmids, the necessary regions of the synergy functions of these two proteins were also located. Results: The cooperative effect between MITF and IRF4 was specific for TYR promoter. The DNA-binding of IRF4 was critical for the synergic function. IRF4 DNA binding sites in TYR promoter were identified. The Trans-activation domains in IRF4 (aa134-207, aa300-420) were both important for the synergic function, whereas the auto-mask domain (aa207-300) appeared to mask the synergic effect. Mutational analysis in MITF indicated that both DNA-binding and transcriptional activation domains were both required for this synergic effect. Conclusions: Here we showed that IRF4 potently synergized with MITF to activate the TYR promoter, which was dependent on DNA binding of IRF4. The synergic domains in both IRF4 and MITF were identified by mutational analysis. This identification of IRF4 as a partner for MITF in regulation of TYR may provide an important molecular function for IRF4 in the genesis of melanocytes and the pathogenic mechanism in WS

    Biochar Amendment Alters the Nutrient-Use Strategy of Moso Bamboo Under N Additions

    Get PDF
    Nutrient resorption can affect plant growth, litter decomposition, and nutrient cycling. Although the effects of nitrogen (N) and biochar fertilizers on soil nutrient concentrations and plant nutrient uptake have been studied, an understanding of how combined applications of N and biochar affect plant nutrient resorption in plantations is lacking. In this study, we applied N (0, 30, 60, and 90 kg N ha−1 yr−1 defined as N0, N30, N60, and N90, respectively) and biochar (0, 20, and 40 t biochar ha−1 defined as BC0, BC20, and BC40, respectively) to the soil of a Moso bamboo plantation. We investigated the effects of these treatments on N and phosphorus (P) resorption by young and mature bamboo plants, as well as the relationships between nutrient resorption and leaf and soil nutrient concentrations. Young bamboo showed significantly greater foliar N resorption efficiency (NRE) and P resorption efficiency (PRE) than mature bamboo. N addition alone significantly increased the N resorption proficiency (NRP) and P resorption proficiency (PRP) but significantly decreased the NRE and PRE of both young and mature bamboo. In both the N-free and N-addition treatments, biochar amendments significantly reduced the foliar NRE and PRE of young bamboo but had the opposite effect on mature bamboo. Foliar NRE and PRE were significantly negatively correlated with fresh leaf N and P concentrations and soil total P concentration but significantly positively correlated with soil pH. Our findings suggest that N addition inhibits plant nutrient resorption and alters the nutrient-use strategy of young and mature bamboo from “conservative consumption” to “resource spending.” Furthermore, biochar amendment enhanced the negative effect of N addition on nutrient resorption in young bamboo but reduced the negative effect on that of mature bamboo under N-addition treatments. This study provides new insights into the combined effects of N and biochar on the nutrient resorption of Moso bamboo and may assist in improving fertilization strategies in Moso bamboo plantations

    Biochar mitigates the effect of nitrogen deposition on soil bacterial community composition and enzyme activities in a Torreya grandis orchard

    Get PDF
    Increased reactive N deposition has widespread effects on terrestrial ecosystems, such as biodiversity loss, soil acidification, as well as stimulated plant growth. Empirical studies show that biochar often affects soil quality, crop productivity, soil microbial community composition and enzyme activities. However, the effect of biochar addition on forest soil bacterial community along with enzyme activities under nitrogen (N) deposition and its related mechanisms have not been well studied yet. Therefore, a 2-year field study was conducted to investigate the effects of biochar amendment (0, 20, 40 kg biochar ha−1 yr−1) on soil nutrients, enzyme activities, and bacterial community in a Torreya grandis orchard under different levels of N deposition (0, 30, 60 kg N ha−1 yr−1). N deposition significantly increased soil nutrients availability, such as N, phosphorus (P) and potassium (K), while biochar amendment led to significant increase in soil pH, organic carbon (SOC), total N (TN), total P (TP), available P (AP) and available K (AK). Both N deposition and biochar amendment significantly decreased the soil microbial biomass carbon (MBC), altered soil microbial community and enzyme activities significantly. Biochar addition increased the relative abundance of phylum Proteobacteria under different levels of N deposition, but had variable effect on Acidobacteria groups. Non-metric multidimensional scaling (NMDS) indicated that biochar amendment can mitigate the effect of N deposition on soil bacterial community composition and enzyme activities. Soil pH and SOC played an important role in shaping soil bacterial community composition, while available AP and AK contents significantly related to the variation of soil enzyme activities. Structure equation modeling (SEM) revealed that N deposition had negative effect on soil enzyme activities while biochar amendment can mitigate this negative effect through increasing AP content. Our result suggests that biochar amendment can mitigate the alteration of soil bacterial community and enzyme activities induced by N deposition, and this mitigation effect was linked to the alteration of soil physicochemical properties, especially the increased AP content. Thus, biochar amendment could be a promising way to develop sustainable forest management under increasing N deposition.Peer reviewe

    Nitrogen Deposition Enhances Photosynthesis in Moso Bamboo but Increases Susceptibility to Other Stress Factors

    No full text
    Atmospheric nitrogen (N) deposition can increase the susceptibility of vascular plants to other stresses, but the physiological basis of such a response remains poorly understood. This study was designed to clarify the physiological mechanisms and to evaluate bioindicators of N deposition impact on vascular plants. We evaluate multiple physiological responses to ~4 years of simulated additional N deposition (30–90 kg N ha−1 year−1) on three age-classes (1a, 3a, and 5a) of Moso bamboo. A saturating response to the additional N deposition was found both in foliar N concentration and in Pn. However, 3- and 5-year-old bamboo seemed to be less tolerant to extremely high N deposition than 1-year-old bamboo since they were saturated at a lower N addition. Furthermore, C/N/P stoichiometric ratios were very sensitive to N deposition in all three-age classes of bamboo, but the responses to N deposition in the various age-classes were diverse. We also found that the highest additional N deposition suppressed stomatal conductance and transpiration rate, suggesting an induced water stress. The stress induced by the high N load was also seen in photochemistry, where it reduced potential and actual photosynthetic use of light energy, diminished photo-protection capacity, and increased risk of the photo-damage. High additional N deposition contributed to a decrease in the foliar soluble protein contents and to an increase in the peroxidase activity (POD). Our study suggested, for the first time, that although the photosynthetic rate was enhanced by the increased N deposition in Moso bamboo, long-term high N load causes negative effects, such as damage to photosystem II. In Moso bamboo photochemical parameters are more sensitive to N deposition than photosynthetic rate or foliar N concentration. Furthermore, plant age should be taken into account when assessing plants' susceptibility to changes in global change drivers, such as N deposition. These findings facilitate the revealing of the risks potentially caused to vascular plants by increased N deposition before any visible symptoms of injury are seen

    Photosynthesis, Ecological Stoichiometry, and Non-Structural Carbohydrate Response to Simulated Nitrogen Deposition and Phosphorus Addition in Chinese Fir Forests

    No full text
    Phosphorus (P) deficiency in soil affects plant growth and primary production. Accelerated nitrogen (N) deposition can cause ecological carbon:nitrogen:phosphorus (C:N:P) stoichiometry imbalance and increase the degree of relative P deficiency in the soil. However, it remains unclear how N deposition affects P uptake and C:N:P stoichiometry in coniferous timber forests, and whether P addition diminishes the effect of N-induced P limitation on plant growth. From January 2017 to April 2018, we investigated the effects of nine different N and P addition treatments on 10-year old trees of Chinese fir, Cunninghamia lanceolata (Lamb.) Hook. Our results demonstrated that N and P additions at a high concentration could improve the photosynthetic capacity in Chinese fir by increasing the chlorophyll content and stimulating the photosynthesis activity. The C:N:P stoichiometry varied with the season under different N and P addition treatments, indicating that N addition at a moderate concentration could diminish the effect of the P limitation on the growth of Chinese fir. The soluble sugar content in the leaves displayed more stable seasonal variations, compared with those of starch. However, the non-structural carbohydrate (NSC) content in the leaves did not vary with the season under both P and N addition treatment. The data suggested that N and P combination treatment at moderate concentrations promoted carbon assimilation by accelerating the photosynthetic rate. Thus, our results provide new insights into the adaptation mechanisms of coniferous timber forest ecosystems to the effects of N deposition under P deficiency and can help to estimate the ecological effects of environmental changes linked to human management practices

    Effects of Nitrogen Deposition on Soil Dissolved Organic Carbon and Nitrogen in Moso Bamboo Plantations Strongly Depend on Management Practices

    No full text
    Soil dissolved organic carbon (DOC) and nitrogen (DON) play significant roles in forest carbon, nitrogen and nutrient cycling. The objective of the present study was to estimate the effect of management practices and nitrogen (N) deposition on soil DOC and DON in Moso bamboo (Phyllostachys edulis (Carrière) J. Houz) plantations. This experiment, conducted for over 36 months, investigated the effects of four N addition levels (30, 60 and 90 kg N ha−1 year−1, and the N-free control) and two management practices (conventional management (CM) and intensive management (IM)) on DOC and DON. The results showed that DOC and DON concentrations were the highest in summer. Both intensive management and N deposition independently decreased DOC and DON in spring (p < 0.05) but not in winter. However, when combined with IM, N deposition increased DOC and DON in spring and winter (p < 0.05). Our results demonstrated that N deposition significantly increased the loss of soil DOC and DON in Moso plantations, and this reduction was strongly affected by IM practices and varied seasonally. Therefore, management practices and seasonal variation should be considered when using ecological models to estimate the effects of N deposition on soil DOC and DON in plantation ecosystems

    The Responses of Plant Leaf CO2/H2O Exchange and Water Use Efficiency to Drought: A Meta-Analysis

    No full text
    Persistent drought severely inhibits plant growth and productivity, which negatively affects terrestrial primary productivity worldwide. Therefore, it is important to investigate the impacts of drought on plant leaf CO2/H2O exchange and water use efficiency. This study assessed the responses of net photosynthesis (Pn), stomatal conductance (Gs), transpiration (Tr), and instantaneous water use efficiency (WUE) to drought based on a worldwide meta-analysis of 112 published studies. The results demonstrated that drought decreased Pn, Tr, and Gs significantly and differently among different moderators. C4 plants had smaller Pn reduction than C3 plants, which gives C4 plants an advantage in Pn. But their WUE decreased under drought conditions, indicating a great flexibility in C4 WUE. Annual herbs sacrificed WUE (−6.2%) to maintain efficient Pn. Perennial herbs took a different strategy in response to drought with an increased WUE (25.1%). Deciduous tree species displayed a greater increase in WUE than conifers and evergreen species. Additionally, Gs had a significant correlation with Pn and Tr, but an insignificant correlation with WUE, which could be because WUE is affected by other factors (e.g., air flow, CO2 concentration, and relative humidity). These findings have significant implications for understanding the worldwide effects of drought on plant leaf CO2/H2O exchange and water use efficiency

    Agroforestry alters the fluxes of greenhouse gases of Moso bamboo plantation soil

    No full text
    Agroforestry systems are widely applied in China and have both economic and ecological benefits. However, relatively few prior studies have investigated the relative ecological benefits of various agroforestry systems. In the present study, the static chamber method, quantitative polymerase chain reaction, high throughput sequencing were used to establish the differences in greenhouse gases (GHGs) fluxes and explore the bacterial and fungal populations affecting GHGs fluxes under different agroforestry systems, including pure Moso bamboo forest (CK), bamboo + Bletilla striata (BB), bamboo + Dictyophora indusiata (BD), and bamboo + chickens (BC). The highest cumulative CH _4 uptake and N _2 O emission in spring occurred in BB while the highest cumulative CO _2 emission and global warming potential (GWP) in spring occurred in BC. The Methylomirabilaceae were the key methanotrophs influencing the comparative differences in NO _3 ^− associated CH _4 uptake among the various agroforestry systems. N _2 O emission was associated with pH, and nitrifiers such as the ammonia-oxidizing archaea and bacteria (Nitrospiraceae and Nitrosomonadaceae) rather than denitrifiers may be the key microbes affecting N _2 O emission in different agroforestry systems. The bacteria Actinobacteriota and Fibrobacteres and the fungi Ascomycetes and Basidiomycota were the primary microbial taxa influencing CO _2 emission. The lignin-decomposing Basidiomycota played more important roles in CO _2 emission than the cellulose-decomposing fungi and bacteria under the various agroforestry systems. CO _2 emission was positively correlated with NO _3 ^− in the bacterial community and was negatively correlated with NO _3 ^− in the fungal community, implying two C decomposition mechanisms caused by denitrification dominated in bacteria and those caused by microbial nitrogen mining dominated in fungi. The foregoing results suggested that bamboo + B. striata had comparatively higher ecological benefits as it is associated with low GWP and external C fixation. The present study provided valuable information for screening bamboo-based agroforestry systems with high ecological benefits. It also elucidated the microbial mechanism explaining the observed differences in GHGs fluxes between the various agroforestry systems

    Biochar mitigates dissolved organic carbon loss but does not affect dissolved organic nitrogen leaching loss caused by nitrogen deposition in Moso bamboo plantations

    No full text
    Dissolved organic matter (DOM) is one of the most reactive and mobile components in terrestrial ecosystems. Frequent loss of DOM has a negative effect on the surrounding environment. Current abundant deposition of atmospheric nitrogen (N) could significantly influence DOM leaching, and biochar has been suggested to be applied for improving acidic soils However, it remains unclear whether biochar affects dissolved organic carbon (DOC) or dissolved organic nitrogen (DON) loss induced by N deposition in acidic soils. In this study, we observed the effects of biochar amendment (BC0: 0 t biochar ha−1, BC20: 20 t biochar ha−1, and BC40: 40 t biochar ha−1) on the leaching of soil DOC and DON in Moso bamboo plantations that received simulated N deposition (N30: 30 kg N ha−1 yr−1, N60: 60 kg N ha−1 yr−1, N90: 90 kg N ha−1 yr−1, and N-free) for 34 months. DOC loss showed a marked seasonal variation with the lowest loss occurring in spring and the largest loss in summer; no such trend was observed in DON loss. Nitrogen deposition generally increased DOC and DON leaching loss in all four seasons, except DOC leaching loss in spring. Biochar amendment significantly decreased DOC leaching loss in spring, autumn, and winter; however, there was no significant effect on DON. Biochar may therefore mitigate DOC and DON loss caused by N deposition. DOC loss mitigation was also greater than that for DON, especially in autumn. Biochar application is a potential approach to mitigate the DOC and DON leaching loss induced by increasing atmospheric N deposition in Moso bamboo plantations. Keywords: Dissolved organic matter, Biochar, Simulated leaching, Simulated nitrogen deposition, Phyllostachys eduli

    Water-Use Characteristics and Physiological Response of Moso Bamboo to Flash Droughts

    No full text
    Frequent flash droughts can rapidly lead to water shortage, which affects the stability of ecosystems. This study determines the water-use characteristics and physiological mechanisms underlying Moso bamboo response to flash-drought events, and estimates changes to water budgets caused by extreme drought. We analyzed the variability in forest canopy transpiration versus precipitation from 2011–2013. Evapotranspiration reached 730 mm during flash drought years. When the vapor pressure deficit > 2 kPa and evapotranspiration > 4.27 mm·day−1, evapotranspiration was mainly controlled through stomatal opening and closing to reduce water loss. However, water exchange mainly occurred in the upper 0–50 cm of the soil. When soil volumetric water content of 50 cm was lower than 0.17 m3·m−3, physiological dehydration occurred in Moso bamboo to reduce transpiration by defoliation, which leads to water-use efficiency decrease. When mean stand density was <3500 trees·ha−1, the bamboo forest can safely survive the flash drought. Therefore, we recommend thinning Moso bamboo as a management strategy to reduce transpiration in response to future extreme drought events. Additionally, the response function of soil volumetric water content should be used to better simulate evapotranspiration, especially when soil water is limited
    corecore