369 research outputs found

    An Experimental Study on Shear Performance of Adhesive Interface between Steel Plates and CFRP

    Get PDF
    CFRP (Carbon Fiber Reinforced Polymer) are widely used in steel structural reinforcement. For steel structures strengthened with CFRP, except the cases the structures have defects before strengthening, the adhesive interface is the weakest part and CFRP debonding is the most common failure mode. In order to investigate the failure mechanism of CFRP strengthened steel structures, this paper presents an experimental study on shear performance of adhesive interface between steel plate and CFRP by twin shear model. Six steel plates strengthened with CFRP are divided into two groups, one has no damage, another has a gap at the mid. The specimens are tested under tensile loadings. The study results show that, the plates with a gap failed for CFRPs debonding, the cracking loading and breaking loading are 14.85kN, and 17.88kN respectively; the strain-loading curves had long linear stages, two strains decrease and other strains of another side increased rapidly at the cracking loading, then they both rose until the plates failed

    AutoFi: Towards Automatic WiFi Human Sensing via Geometric Self-Supervised Learning

    Full text link
    WiFi sensing technology has shown superiority in smart homes among various sensors for its cost-effective and privacy-preserving merits. It is empowered by Channel State Information (CSI) extracted from WiFi signals and advanced machine learning models to analyze motion patterns in CSI. Many learning-based models have been proposed for kinds of applications, but they severely suffer from environmental dependency. Though domain adaptation methods have been proposed to tackle this issue, it is not practical to collect high-quality, well-segmented and balanced CSI samples in a new environment for adaptation algorithms, but randomly-captured CSI samples can be easily collected. {\color{black}In this paper, we firstly explore how to learn a robust model from these low-quality CSI samples, and propose AutoFi, an annotation-efficient WiFi sensing model based on a novel geometric self-supervised learning algorithm.} The AutoFi fully utilizes unlabeled low-quality CSI samples that are captured randomly, and then transfers the knowledge to specific tasks defined by users, which is the first work to achieve cross-task transfer in WiFi sensing. The AutoFi is implemented on a pair of Atheros WiFi APs for evaluation. The AutoFi transfers knowledge from randomly collected CSI samples into human gait recognition and achieves state-of-the-art performance. Furthermore, we simulate cross-task transfer using public datasets to further demonstrate its capacity for cross-task learning. For the UT-HAR and Widar datasets, the AutoFi achieves satisfactory results on activity recognition and gesture recognition without any prior training. We believe that the AutoFi takes a huge step toward automatic WiFi sensing without any developer engagement.Comment: The paper has been accepted by IEEE Internet of Things Journa

    Convolutional Embedding for Edit Distance

    Full text link
    Edit-distance-based string similarity search has many applications such as spell correction, data de-duplication, and sequence alignment. However, computing edit distance is known to have high complexity, which makes string similarity search challenging for large datasets. In this paper, we propose a deep learning pipeline (called CNN-ED) that embeds edit distance into Euclidean distance for fast approximate similarity search. A convolutional neural network (CNN) is used to generate fixed-length vector embeddings for a dataset of strings and the loss function is a combination of the triplet loss and the approximation error. To justify our choice of using CNN instead of other structures (e.g., RNN) as the model, theoretical analysis is conducted to show that some basic operations in our CNN model preserve edit distance. Experimental results show that CNN-ED outperforms data-independent CGK embedding and RNN-based GRU embedding in terms of both accuracy and efficiency by a large margin. We also show that string similarity search can be significantly accelerated using CNN-based embeddings, sometimes by orders of magnitude.Comment: Accepted by the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 202

    PKU-I2IQA: An Image-to-Image Quality Assessment Database for AI Generated Images

    Full text link
    As image generation technology advances, AI-based image generation has been applied in various fields and Artificial Intelligence Generated Content (AIGC) has garnered widespread attention. However, the development of AI-based image generative models also brings new problems and challenges. A significant challenge is that AI-generated images (AIGI) may exhibit unique distortions compared to natural images, and not all generated images meet the requirements of the real world. Therefore, it is of great significance to evaluate AIGIs more comprehensively. Although previous work has established several human perception-based AIGC image quality assessment (AIGCIQA) databases for text-generated images, the AI image generation technology includes scenarios like text-to-image and image-to-image, and assessing only the images generated by text-to-image models is insufficient. To address this issue, we establish a human perception-based image-to-image AIGCIQA database, named PKU-I2IQA. We conduct a well-organized subjective experiment to collect quality labels for AIGIs and then conduct a comprehensive analysis of the PKU-I2IQA database. Furthermore, we have proposed two benchmark models: NR-AIGCIQA based on the no-reference image quality assessment method and FR-AIGCIQA based on the full-reference image quality assessment method. Finally, leveraging this database, we conduct benchmark experiments and compare the performance of the proposed benchmark models. The PKU-I2IQA database and benchmarks will be released to facilitate future research on \url{https://github.com/jiquan123/I2IQA}.Comment: 18 page

    Understanding and Improving Proximity Graph based Maximum Inner Product Search

    Full text link
    The inner-product navigable small world graph (ip-NSW) represents the state-of-the-art method for approximate maximum inner product search (MIPS) and it can achieve an order of magnitude speedup over the fastest baseline. However, to date it is still unclear where its exceptional performance comes from. In this paper, we show that there is a strong norm bias in the MIPS problem, which means that the large norm items are very likely to become the result of MIPS. Then we explain the good performance of ip-NSW as matching the norm bias of the MIPS problem - large norm items have big in-degrees in the ip-NSW proximity graph and a walk on the graph spends the majority of computation on these items, thus effectively avoids unnecessary computation on small norm items. Furthermore, we propose the ip-NSW+ algorithm, which improves ip-NSW by introducing an additional angular proximity graph. Search is first conducted on the angular graph to find the angular neighbors of a query and then the MIPS neighbors of these angular neighbors are used to initialize the candidate pool for search on the inner-product proximity graph. Experiment results show that ip-NSW+ consistently and significantly outperforms ip-NSW and provides more robust performance under different data distributions.Comment: 8 pages, 8 figure
    corecore