13 research outputs found
Serum metabolomics analysis in patients with alcohol dependence
ObjectiveAlcohol dependence (AD) is a chronic recurrent mental disease caused by long-term drinking. It is one of the most prevalent public health problems. However, AD diagnosis lacks objective biomarkers. This study was aimed to shed some light on potential biomarkers of AD patients by investigating the serum metabolomics profiles of AD patients and the controls.MethodsLiquid chromatography-mass spectrometry (LC–MS) was used to detect the serum metabolites of 29 AD patients (AD) and 28 controls. Six samples were set aside as the validation set (Control: n = 3; AD group: n = 3), and the remaining were used as the training set (Control: n = 26; AD group: n = 25). Principal component analysis (PCA) and partial least squares discriminant analysis (PCA-DA) were performed to analyze the training set samples. The metabolic pathways were analyzed using the MetPA database. The signal pathways with pathway impact >0.2, value of p <0.05, and FDR < 0.05 were selected. From the screened pathways, the metabolites whose levels changed by at least 3-fold were screened. The metabolites with no numerical overlap in their concentrations in the AD and the control groups were screened out and verified with the validation set.ResultsThe serum metabolomic profiles of the control and the AD groups were significantly different. We identified six significantly altered metabolic signal pathways, including protein digestion and absorption; alanine, aspartate, and glutamate metabolism; arginine biosynthesis; linoleic acid metabolism; butanoate metabolism; and GABAergic synapse. In these six signal pathways, the levels of 28 metabolites were found to be significantly altered. Of these, the alterations of 11 metabolites changed by at least 3-fold compared to the control group. Of these 11 metabolites, those with no numerical overlap in their concentrations between the AD and the control groups were GABA, 4-hydroxybutanoic acid, L-glutamic acid, citric acid and L-glutamine.ConclusionThe metabolite profile of the AD group was significantly different from that of the control group. GABA, 4-hydroxybutanoic acid, L-glutamic acid, citric acid, and L-glutamine could be used as potential diagnostic markers for AD
The crosstalk between anoikis and epithelial-mesenchymal transition and their synergistic roles in predicting prognosis in colon adenocarcinoma
Anoikis and epithelial-mesenchymal transition (EMT) are significant phenomena occurring in distant metastasis of colon adenocarcinoma (COAD). A comprehensive understanding of their crosstalk and the identification of key genes are vital for treating the distant metastasis of COAD. The objective of this study was to design and validate accurate prognostic predictors for COAD patients based on the anoikis and EMT processes. We obtained gene signatures from various databases and performed univariate and multivariate Cox regression analyses, principal component analysis (PCA). The COAD patients were categorized into the worst prognosis group, the Anoikis Potential Index (API) Low + EMT Potential Index (EPI) High group and the others group. Then we utilized gene set enrichment analysis (GSEA) to identify differentially expressed genes and to establish a prognostic risk model. The model classified patients into high- or low-risk groups, with patients in the high-risk group displaying worse survival status. A nomogram was established to predict overall survival rates, demonstrating high specificity and sensitivity. Additionally, we connected the risk model to the tumor microenvironment (TME) using single-sample GSEA and the MCP counter tool, as well as evaluated the sensitivity to common chemotherapeutic drugs, such as Gefitinib and Gemcitabine. Lastly, cell and tissue experiments suggested a positive correlation among anoikis resistance, EMT, and liver/lung metastasis of COAD. This is the first study to comprehensively analyze the crosstalk between anoikis and EMT and offers new therapeutic targets for COAD metastasis patients
A Fibrational Method of Indexed Coinductive Data Types
As a fundamental issue in type theory, indexed coinductive data types (ICDT, for short) is of crucial importance, which is essentially semantic computing problem in programming. Based on fibrational method, this paper analyses semantic behaviours of ICDT and describes their universal coinductive rules. We executed some works in semantic computing and program logic of ICDT including their math structures and categorical properties. Example analyses prove the effectiveness of the proposed fibrational method and its applicability in program languages. Our work is based on fibration; a general math setting that can compute semantics automatically rather than depend on particular computing environments and syntactic forms of ICDT
Identifying Corn Lodging in the Mature Period Using Chinese GF-1 PMS Images
Efficient, fast, and accurate crop lodging monitoring is urgent for farmers, agronomists, insurance loss adjusters, and policymakers. This study aims to explore the potential of Chinese GF-1 PMS high-spatial-resolution images for corn lodging monitoring and to find a robust and efficient way to identify corn lodging accurately and efficiently. Three groups of image features and five machine-learning approaches are used for classifying non-lodged, moderately lodged, and severely lodged areas. Our results reveal that (1) the combination of spectral bands, optimized vegetation indexes, and texture features classify corn lodging with an overall accuracy of 93.81% and a Kappa coefficient of 0.91. (2) The random forest is an efficient, robust, and easy classifier to identify corn lodging with the F1-score of 0.95, 0.92, and 0.95 for non-lodged, moderately lodged, and severely lodged areas, respectively. (3) The GF-1 PMS image has great potential for identifying corn lodging on a regional scale
Construction and Immunogenicity Evaluation of Recombinant Adenovirus-Expressing Capsid Protein of Foot-and-Mouth Disease Virus Types O and A
The objective of this study was to construct a recombinant adenovirus expressing the foot-and-mouth disease virus (FMDV) capsid protein of types O and A for future FMDV vaccines to be used in the livestock industry for the reduction in losses caused by FMD outbreaks. Three recombinant adenoviruses, rAdv-P12A3B3C-OZK93, rAdv-P12A3B3C-OA58, and rAdv-P12A3C-AF72, were packaged, characterized, and amplified using the AdMaxTM adenovirus packaging system, and the humoral and cellular immunity levels were further evaluated in guinea pigs with monovalent or bivalent forms. The results showed that the three recombinant adenoviruses could elicit high levels of humoral and cellular immune responses against FMDV types O and A when immunizing monovalent or bivalent forms, and the immune effect changes with the change in the proportion of recombinant adenovirus types O and A, laying an important foundation for the future development of a new FMD live-carrier vaccine. These results implied that the recombinant adenovirus expressing the FMDV capsid protein of types O and A could be used to prevent FMDV in livestock
Hydrogel Loaded with Extracellular Vesicles: An Emerging Strategy for Wound Healing
An increasing number of novel biomaterials have been applied in wound healing therapy. Creating beneficial environments and containing various bioactive molecules, hydrogel- and extracellular vesicle (EV)-based therapies have respectively emerged as effective approaches for wound healing. Moreover, the synergistic combination of these two components demonstrates more favorable outcomes in both chronic and acute wound healing. This review provides a comprehensive discussion and summary of the combined application of EVs and hydrogels to address the intricate scenario of wounds. The wound healing process and related biological mechanisms are outlined in the first section. Subsequently, the utilization of EV-loaded hydrogels during the wound healing process is evaluated and discussed. The moist environment created by hydrogels is conducive to wound tissue regeneration. Additionally, the continuous and controlled release of EVs from various origins could be achieved by hydrogel encapsulation. Finally, recent in vitro and in vivo studies reported on hydrogel dressings loaded with EVs are summarized and challenges and opportunities for the future clinical application of this therapeutic approach are outlined
Type 3 resistant starch from Canna edulis reduce lipid levels in patients with mild hyperlipidemia through altering gut microbiome: A double- blind randomized controlled trial
Type 3 resistant starch from Canna edulis (Ce-RS3) is an insoluble dietary fiber which could improve blood lipids in animals, but clinically robust evidence is still lacking. We performed a double-blind randomized controlled trial to assess the effects of Ce-RS3 on lipids in mild hyperlipidemia. One hundred and fifteen patients were included followed the recruitment criteria, and were randomly allocated to receive Ce-RS3 or placebo (native starch from Canna edulis) for 12 weeks (20 g/day). In addition to serum lipids, complete blood counts, serum inflammatory factors, antioxidant indexes, and dietary survey, 16 S rRNA sequencing technique was utilized to analyze the gut microbiota alterations. Targeted quantitative metabolomics (TQM) was used to detect metabolite changes. Compared with the placebo, Ce- RS3 significantly decreased levels of total cholesterol, lowdensity lipoprotein cholesterol, and non-high-density lipoprotein cholesterol, and increased the glutathione peroxidase. Based on the 16 S rRNA sequencing, TQM, the correlation analysis, as well as the Kyoto Encyclopedia of Genes (KEGG) and Genomes and Human Metabolome Database (HMDB) analysis, we found that Ce-RS3 could increase the abundances of genera Faecalibacterium and Agathobacter, while reduce the abundances of genera norank_f_Ruminococcaceae and Christensenellaceae_R-7_ group to regulate phenylalanine metabolism, which could reduce the fatty acid biosynthesis and fatty acid elongation in the mitochondria to lower blood lipids. Conclusively, we firstly confirmed the feasibility of Ce-RS3 for clinical application, which presents a novel, effective therapy for the mild hyperlipidemia. (Chictr. org. cn. Clinical study on anti-mild hyperlipidemia of Canna edulis RS3 resistant starch, ID Number: ChiCTR2200062871)
Data_Sheet_1_Serum metabolomics analysis in patients with alcohol dependence.docx
ObjectiveAlcohol dependence (AD) is a chronic recurrent mental disease caused by long-term drinking. It is one of the most prevalent public health problems. However, AD diagnosis lacks objective biomarkers. This study was aimed to shed some light on potential biomarkers of AD patients by investigating the serum metabolomics profiles of AD patients and the controls.MethodsLiquid chromatography-mass spectrometry (LC–MS) was used to detect the serum metabolites of 29 AD patients (AD) and 28 controls. Six samples were set aside as the validation set (Control: n = 3; AD group: n = 3), and the remaining were used as the training set (Control: n = 26; AD group: n = 25). Principal component analysis (PCA) and partial least squares discriminant analysis (PCA-DA) were performed to analyze the training set samples. The metabolic pathways were analyzed using the MetPA database. The signal pathways with pathway impact >0.2, value of p ResultsThe serum metabolomic profiles of the control and the AD groups were significantly different. We identified six significantly altered metabolic signal pathways, including protein digestion and absorption; alanine, aspartate, and glutamate metabolism; arginine biosynthesis; linoleic acid metabolism; butanoate metabolism; and GABAergic synapse. In these six signal pathways, the levels of 28 metabolites were found to be significantly altered. Of these, the alterations of 11 metabolites changed by at least 3-fold compared to the control group. Of these 11 metabolites, those with no numerical overlap in their concentrations between the AD and the control groups were GABA, 4-hydroxybutanoic acid, L-glutamic acid, citric acid and L-glutamine.ConclusionThe metabolite profile of the AD group was significantly different from that of the control group. GABA, 4-hydroxybutanoic acid, L-glutamic acid, citric acid, and L-glutamine could be used as potential diagnostic markers for AD.</p
Thermal Evaporation and Characterization of Sb<sub>2</sub>Se<sub>3</sub> Thin Film for Substrate Sb<sub>2</sub>Se<sub>3</sub>/CdS Solar Cells
Sb<sub>2</sub>Se<sub>3</sub> is a promising absorber material for
photovoltaic cells because of its optimum band gap, strong optical
absorption, simple phase and composition, and earth-abundant and nontoxic
constituents. However, this material is rarely explored for photovoltaic
application. Here we report Sb<sub>2</sub>Se<sub>3</sub> solar cells
fabricated from thermal evaporation. The rationale to choose thermal
evaporation for Sb<sub>2</sub>Se<sub>3</sub> film deposition was first
discussed, followed by detailed characterization of Sb<sub>2</sub>Se<sub>3</sub> film deposited onto FTO with different substrate temperatures.
We then studied the optical absorption, photosensitivity, and band
position of Sb<sub>2</sub>Se<sub>3</sub> film, and finally a prototype
photovoltaic device FTO/Sb<sub>2</sub>Se<sub>3</sub>/CdS/ZnO/ZnO:Al/Au
was constructed, achieving an encouraging 2.1% solar conversion efficiency
Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries
Solar cells based on inorganic absorbers, such as Si, GaAs, CdTe and Cu(In,Ga)Se2, permit a high device efficiency and stability. The crystals’ three-dimensional structure means that dangling bonds inevitably exist at the grain boundaries (GBs), which significantly degrades the device performance via recombination losses. Thus, the growth of single-crystalline materials or the passivation of defects at the GBs is required to address this problem, which introduces an added processing complexity and cost. Here we report that antimony selenide (Sb2Se3)—a simple, non-toxic and low-cost material with an optimal solar bandgap of ∼1.1 eV—exhibits intrinsically benign GBs because of its one-dimensional crystal structure. Using a simple and fast (∼1 μm min–1) rapid thermal evaporation process, we oriented crystal growth perpendicular to the substrate, and produced Sb2Se3 thin-film solar cells with a certified device efficiency of 5.6%. Our results suggest that the family of one-dimensional crystals, including Sb2Se3, SbSeI and Bi2S3, show promise in photovoltaic applications