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Objective: Alcohol dependence (AD) is a chronic recurrent mental disease caused 
by long-term drinking. It is one of the most prevalent public health problems. 
However, AD diagnosis lacks objective biomarkers. This study was aimed to shed 
some light on potential biomarkers of AD patients by investigating the serum 
metabolomics profiles of AD patients and the controls.

Methods: Liquid chromatography-mass spectrometry (LC–MS) was used to detect 
the serum metabolites of 29 AD patients (AD) and 28 controls. Six samples were set 
aside as the validation set (Control: n = 3; AD group: n = 3), and the remaining were 
used as the training set (Control: n = 26; AD group: n = 25). Principal component 
analysis (PCA) and partial least squares discriminant analysis (PCA-DA) were 
performed to analyze the training set samples. The metabolic pathways were 
analyzed using the MetPA database. The signal pathways with pathway impact 
>0.2, value of p <0.05, and FDR < 0.05 were selected. From the screened pathways, 
the metabolites whose levels changed by at least 3-fold were screened. The 
metabolites with no numerical overlap in their concentrations in the AD and the 
control groups were screened out and verified with the validation set.

Results: The serum metabolomic profiles of the control and the AD groups were 
significantly different. We  identified six significantly altered metabolic signal 
pathways, including protein digestion and absorption; alanine, aspartate, and 
glutamate metabolism; arginine biosynthesis; linoleic acid metabolism; butanoate 
metabolism; and GABAergic synapse. In these six signal pathways, the levels of 28 
metabolites were found to be significantly altered. Of these, the alterations of 11 
metabolites changed by at least 3-fold compared to the control group. Of these 
11 metabolites, those with no numerical overlap in their concentrations between 
the AD and the control groups were GABA, 4-hydroxybutanoic acid, L-glutamic 
acid, citric acid and L-glutamine.

Conclusion: The metabolite profile of the AD group was significantly different 
from that of the control group. GABA, 4-hydroxybutanoic acid, L-glutamic acid, 
citric acid, and L-glutamine could be used as potential diagnostic markers for AD.
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Background

Alcohol is one of the most widely used psychoactive substances. 
Clinical research shows that both the number of alcohol drinkers and 
the annual alcohol consumption are increasing (1). The disease burden 
caused by alcohol consumption is also increasing (2). Alcohol use 
disorder, is the most prevalent mental disorder in the world, associated 
with high mortality and disease burden (3). It is characterized by 
compulsive and uncontrolled drinking, including alcohol abuse and 
alcohol dependence (AD), which is caused by long-term drinking. AD, 
also known as alcohol addiction, is manifested in the form of forced 
alcohol seeking and continuous or regular drinking. Its core symptoms 
include physical dependence, characterized by increased alcohol 
tolerance and withdrawal reaction, and psychological dependence, 
characterized by alcohol craving. AD is the most serious type of alcohol 
use disorder, with a prevalence rate of 2.6% among people elder than 
15 years old in 2016 (4). America has the highest prevalence rate 
(4.1%), followed by Europe (3.7%) (4) and China (1.3%) (5). At present, 
AD and its related problems are the third most prevalent global public 
health problem after cardiovascular diseases and tumors (6). Therefore, 
it has attracted much attention of people, especially researchers.

The researches on AD mainly focus on genetics (7, 8), epigenetics 
(9, 10), imaging (11–13), etc. Only a few studies have focused on 
identifying metabolic markers of AD through metabolomics analyses. 
However, AD patients may be  accompanied by metabolic 
abnormalities. Many AD patients have irregular lives, and heavy 
drinking worsens their appetite. Alcohol can only provide energy. It 
does not contain essential nutrients, such as proteins, required by the 
body. In addition, AD patients have impaired gastrointestinal and liver 
functions and absorption obstacles. Thus, the lack of nutrients is a 
problem for serious alcoholics. These factors can be contributed to 
metabolic abnormalities in AD patients.

Metabolomics, which is usually based on chromatography and 
mass spectrometry, have been used to better understand diseases and 
drug discovery (14–23). LC–MS is a widely used metabolomics 
technique (24). Principal component analysis (PCA) and partial least 
squares-discriminant analysis (PLS-DA) are the two most commonly 
used dimensionality reduction analysis methods for metabolomic data 
to reduce the complexity of the data (25).

Metabolomics has divided into untargeted and targeted 
metabolomics based on the research purpose. Untargeted 
metabolomics has been commonly used in human diseases, such as 
type 2 diabetes (26), liver disease (27), cancer (28, 29), neurological 
disorders (30), and drug addiction (31, 32). However, studies on 
AD-related metabolomics are rare.

In this study, an untargeted LC–MS approach was used to study 
the serum metabolomics of AD patients and the controls. We analyzed 
the differential metabolic pathways and metabolites potentially 
associated with AD. Our findings might provide useful insights into 
the pathogenesis of AD and associated biomarkers.

Materials and methods

Reagents and instruments

Methanol and acetonitrile were obtained from Thermo Fisher 
Scientific (United States). 2-Chlorophenylalanine and formic acid 

were purchased from Aladdin (Shanghai, China) and Tokyo Chemical 
Industry (Shanghai, China), respectively. Ammonium formate was 
purchased from Sigma Aldrich (USA). The frozen centrifuge with the 
model of H1850-R used in the experiment comes from Xiangyi 
(China). The mixer with the model of BE-2600 was from Kylin-Bell 
(China) and the vacuum concentrator (model 5,305) was from 
Eppendorf (Germany). The filter membrane (0.22 μm) were obtained 
from Jinteng company (China). Metabolomics analysis was conducted 
on Thermo Fisher liquid chromatography in tandem with a Q Exactive 
HF-X Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo 
Fisher Scientific, United States).

Study population

The AD patients admitted to the Department of Addiction in the 
Second Affiliated Hospital of Xinxiang Medical University between 
December 2019 and December 2020 were enrolled in this study. The 
control serum samples were acquired from healthy normal individuals 
during the same period. The flowchart of the study protocol is 
demonstrated in Figure 1.

Sample preparation for metabolomics 
analysis

Fasting blood was collected into non-anticoagulant blood 
collection vessels in the morning and coagulated at 4°C for 8 h. 
Then, it was centrifuged at 4°C at 3000 rpm for 15 min. The serum 
was temporarily stored at −80°C before use. Hemolytic samples 
were excluded. Before the metabolomics analysis, the sample was 
thawed at 4°C. Each sample with a mount of 100 μL was 
transferred into 2 mL centrifuge tubes, respectively. Then, 400 μL 
of precooled methanol (at −20°C) was added to each tube and 
mixed well. The mixtures were then centrifuged for 10 min at 
12000 rpm at 4°C. The supernatants were transferred to another 
2 mL centrifuge tube. The samples were vacuum dried, 
concentrated, and re-dissolved in 150 μL of 80% methanol solution 
(methanol: water(v/v, 4:1)), respectively. 2-chlorobenzalanine 
with a final concentration of 4 μg/mL, was added in the above 
solution as an internal standard to verify instrument stability. The 
mixture was then filtered with a separate 0.22-μm membrane. 
Quality control (QC) samples was prepared by mixing all the 
sample (each sample volume: 20 μL). The remaining of each 
sample was used for LC–MS.

Metabolomics analysis by LC–MS

The chromatographic and mass spectrometric conditions used in 
this study were according to previous studies (33). Briefly, an 
ACQUITY UPLC® HSS T3 column (150 × 2.1 mm, 1.8 μm diameter, 
Waters) was used for chromatographic separation. Two microliters of 
each sample was analyzed after the column equilibrated at a constant 
temperature of 40°C. Mass spectrometry spectra were sampled with 
an electrospray ionization source (ESI) operating both in positive-ion 
(voltage: 3.5 kV) and negative-ion mode (voltage: −2.5 kV). The 
eluents of 0.1% formic acid in water (A) and 0.1% formic acid in 
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acetonitrile (B) was used for ESI+ mode analysis and 5 mM 
ammonium formate in water (C) and acetonitrile (D) for ESI-mode 
analysis. Gradient elution was used as follows: 0 ~ 1 min, 2% B/D; 
1 ~ 9 min, 2% ~ 50% B/D; 9 ~ 12 min, 50% ~ 98% B/D; 12 ~ 13.5 min, 
98% B/D; 13.5 ~ 14 min, 98% ~ 2% B/D; 14 ~ 20 min, 2% D-positive 
model (14 ~ 17 min, 2% B-negative model). Flow rate of the eluent is 
set at 0.25 mL/min. The capillary temperature was set at 325°C. Data-
dependent acquisition (DDA) MS/MS experiments were performed 
with a higher-energy C-trap dissociation (HCD) scan. The 
normalized collision energy was set at 30 eV. Dynamic exclusion was 
implemented to remove some unnecessary information in MS/
MS spectra.

Xcms format files are used for peak identification, filtration, and 
alignment, which were converted from original data using the 
ProteoWizard software (v3.0.8789). The parameters of alignment refer 
to the data from the published literature (34). In positive and negative 
ion modes, 10,288 and 12,565 precursor molecules were obtained, 
respectively. The metabolites were identified by mass spectra against 
reference spectra of human metabolome database,1 Metlin,2 

1 http://www.hmdb.ca

2 http://metlin.scripps.edu

FIGURE 1

The flowchart of the study protocol.
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massbank,3 LipidMaps,4 mzclound,5 and database built by 
BioNovoGene Co., LTD with a mass accuracy of 30 ppm. Excel was 
used for subsequent analysis. Then the intensity of the data was 
batch normalized.

Data processing and analysis

SIMCA-P (v13.0) and R language ropls package were used for 
multivariate statistical analysis, including PCA and PLS-DA. The 
metabolites with VIP (Variable importance in the projection) values 
≥1 and value of p ≤0.05  in the model were selected for Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis. MetPA, 
mainly based on KEGG metabolic pathways, is a part of 
Metaboanalyst,6 which was selected for concentration and topology 
analysis of metabolic pathways to identify differential metabolic 
pathways. Pathway impact, value of p, and false discovery rate (FDR) 
value were obtained in the above step. The signal pathways with 
pathway impact >0.2, value of p <0.05, and FDR < 0.05 were screened. 
Metabolites with alterations with a 3-fold change compared to the 
control levels were selected. The obtained metabolites were analyzed 
by heat map. The metabolites with no numerical overlap in their 
concentrations in AD and control groups were screened as potential 
diagnose markers of AD.

Statistical analysis

Data were presented as means ± standard deviation (SD). 
Statistical analyses were performed using SPSS 19.0 software. 
Significance test was conducted using unpaired two-tailed Student’s 
t-tests with value of p <0.05.

Results

Clinical data of the study population

The clinical data of all the recruited individuals are shown in 
Table 1. The ages of the two groups did not differ significantly. The 
number of individuals in each age group was displayed in the table.

3 http://www.massbank.jp/

4 http://www.lipidmaps.org

5 https://www.mzcloud.org

6 www.metaboanalyst.ca

Multivariate statistical analysis of 
metabolites

Multivariate statistical analysis was used to process the 
metabolomics data. PCA score plot was used to depict the original 
state of the training sample data (The PCA diagram of all samples 
with QC samples was shown in Supplementary Figure S1). As 
depicted in Figures 2A,B, PCA can effectively separate the AD 
from control groups in the training set. PLS-DA was performed to 
screen different metabolites. Metabolites identified from positive 
and negative ion modes could be used to identify the differences 
between the control and the AD groups (Figures  2C,D), 
respectively. The permutation test showed no overfitting 
(Figures 2E,F). All our results illustrated reliable differentiation in 
metabolic changes between AD and control groups.

Differential metabolite and pathway 
screening

With VIP ≥ 1 and p ≤ 0.05 as the screening criteria, 154 
differential metabolites were screened in the AD and the control 
groups, which were displayed in a heat map (Supplementary Figure S2). 
Further, we used the MetPA database (a part of the meta-analysis, 
mainly based on the KEGG metabolic pathway) to conduct pathway 
enrichment and topological analysis. The signal pathways with 
pathway impact >0.2, value of p <0.05, and FDR < 0.05 were 
screened. The top six selected signal pathways were protein digestion 
and absorption; alanine, aspartate, and glutamate metabolism; 
arginine biosynthesis; linoleic acid metabolism; butanoate 
metabolism; and GABAergic synapse. The information on the 
pathways was shown in Table  2. The histogram of the top six 
screened signal pathways was displayed in Figure 3A. The bubble 
diagram of all changed signal path diagrams was drawn in Figure 3B, 
wherein the top six screened pathways were highlighted with yellow.

Selection of potential biomarkers

The levels of 28 metabolites changed significantly in the top six 
selected signal pathways. The names of these metabolites, as well as 
the times they appear in the six metabolic pathways were shown in 
Table 3. 11 of these metabolites changed more than three-fold when 
compared to their respective levels in the control group. Gamma 
aminobutyric acid (GABA), 4-hydroxybutanoic acid, L-glutamic 
acid, citric acid, N-acetyl-L-aspartic acid, L-aspartic acid, 
(R)-3-hydroxybutyric acid, L-proline, oxoglutaric acid, 
13-L-hydroperoxylinoleic acid, and L-glutamine were among the 11 
metabolites identified (Table 4). Figure 4A depicts a heat map of 
these eleven metabolites. Metabolites with no numerical overlap in 
their concentrations in the AD and the control groups were 
screened out, as indicated by their heat map color. In the relative 
concentration data of L-glutamine, the control group and AD group 
had slightly higher and lower data, respectively. However, besides 
these two parameters, the other concentration data of the two 
groups did not overlap. Finally, five metabolites were screened out. 
Four of these five metabolites, including GABA, 4-hydroxybutanoic 
acid, L-glutamic acid, and citric acid, were significantly upregulated, 

TABLE 1 Clinical data of subjects.

Groups Ctrl (n = 25) AD (n = 26) value of p

Ages (years) 39.48 ± 1.94 40.00 ± 1.70 0.84

20–29 years old (cases) 3 3 /

30–49 years old (cases) 16 18 /

50–59 years old (cases) 6 5 /

Gender Male Male /

Data values of the ages were means ± standard error of the mean.
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and one, that is, L-glutamine, was significantly downregulated 
(Figure  4B). These five metabolites may be  used as potential 
biomarkers. The box diagram of these five metabolites is displayed 
in Figure 4C.

Verification of the screened biomarkers

Further, six samples were used to verify the screened biomarkers 
(i.e., GABA, 4-hydroxybutanoic acid, L-glutamic acid (L-Glutamate), 

A B

C D

E F

FIGURE 2

Plots of PCA and PLS-DA scores of the training samples. (A) PCA in positive ion mode for the sample. (B) PCA in negative ion mode for the sample. 
(C) Score plots of PLS-DA in positive ion mode. (D) Score plots of PLS-DA in negative ion mode. (E) A plot of PLS-DA permutation in positive ion mode. 
(F) A plot of PLS-DA permutation in negative ion mode. To determine that PLS-DA is not overfitting, one of two conditions needs to be met: (1) All blue 
Q2 points are lower from left to right than the original blue Q2 point, and (2) The regression line of point Q2 is less than or equal to 0 at the 
intersection of ordinates. Ctrl: control group; AD: alcohol dependence group.
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TABLE 3 Times of occurrences in the six important signal pathways.

Times of occurrences in 6 
important signal pathways

Name of metabolites

5 L-Glutamic acid; Oxoglutaric acid

3 Succinic acid; L-Aspartic acid; L-Glutamine; gamma-Aminobutyric acid

2 L-Arginine; L-Asparagine; Succinic acid semialdehyde; Argininosuccinic acid

1 L-Phenylalanine; L-Leucine; L-Histidine; L-Proline; Citric acid; Indole; L-Cystine; Diacetyl; 4-Hydroxybutanoic acid;  

(R)-3-Hydroxybutyric acid; N-Acetyl-L-aspartic acid; Linoleic acid; Piperidine; 13-L-Hydroperoxylinoleic acid;  

N-13S-hydroxyoctadecadienoic acid; 13-OxoODE; Alpha-dimorphecolic acid; 9(S)-HPODE

citric acid, and L-glutamine) from the control and AD groups, 
respectively. The heat map of the potential biomarkers was shown in 
Figure 5. Our analysis results from the validation samples revealed no 
numerical overlap in the levels of the five screened metabolites 
between the AD and the control groups, which was consistent with 
our test results. Thus, these five screened metabolites were considered 
to be potential diagnostic markers for AD.

Discussion

In this study, an untargeted UPLC-MS platform was used to 
analyze the serum metabolites of 29 unmedicated AD patients and 28 
normal controls. 25 control and 26 AD samples were used in the 
training set, and the remaining samples used as the validation set. The 

PCA and PLS-DA scores were used for multivariate statistical analysis 
of the metabolites. Results of both PCA and PLS-DA analysis showed 
that the control and AD group could be distinguished effectively. 
We  observed that the serum metabolites of AD patients differed 
significantly from those of the control population. This finding, in 
turn, demonstrated that alcohol, an energy-providing metabolite, 
significantly affects the serum metabolites of AD patients. MetPA 
database was then used to perform pathway enrichment (a part of the 
meta-analysis, mainly based on the KEGG metabolic pathway). Six 
important AD-related pathways were investigated. Twenty-eight 
metabolites were screened for changes in these six pathways. Eleven 
of these metabolites showed a ≥ 3-fold difference in levels between the 
AD and control groups. Furthermore, five metabolites with a stable 
difference between groups and a stable level in the groups were 
screened and considered as potential AD biomarkers using heat map 

TABLE 2 Six important pathways in alcohol dependence.

Pathway name Pathway impact -log(p) value of p FDR Hits

Protein digestion and absorption 0.765 14.008 <0.001 <0.001 12

Alanine, aspartate and glutamate metabolism 0.608 17.935 <0.001 <0.001 11

Arginine biosynthesis 0.390 7.658 <0.001 0.017 6

Linoleic acid metabolism 0.316 6.534 0.001 0.037 6

Butanoate metabolism 0.294 7.511 0.001 0.017 8

GABAergic synapse 0.255 10.734 <0.001 0.001 5

A B

FIGURE 3

Top six metabolic pathways. (A) Histogram of top six metabolic pathways. (B) Bubble diagram of metabolic pathways. Each bubble represents a 
metabolic pathway. The top six pathways were highlighted in yellow color, and the rest remaining were in blue color. Based on the significant values of 
value of p, pathway impact score, and FDR (<0.05, >0.2, and < 0.05, respectively), the top six metabolic pathways were selected and shown by name. 
Ctrl: control group; AD: alcohol dependence group.
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analysis. In addition, we used six samples (three from each of the 
control and AD groups) to validate the screened biomarkers. GABA, 
4-hydroxybutanoic acid, L-glutamic acid (L-Glutamate), citric acid, 
and L-glutamine were among the biomarkers studied.

A previous study revealed a significant increase and decrease in 
plasma glutamate and glutamine levels, respectively, in individuals with 
alcoholic liver diseases compared to those with non-alcoholic liver 
diseases (35). Consistent with this study, we found that the serum levels 

A

B

C

FIGURE 4

Heat map and box plot of important metabolites related to alcohol dependence. (A) Heat map of 11 metabolites screened from six signal pathways. 
(B) The metabolite heat map screened according to heat map A with a small difference within the group (with consistent color within the group). 
Columns represent samples, and rows represent metabolites. (C) Box plot of the selected five metabolites. Ctrl: control group; AD: alcohol 
dependence group. *p < 0.05.
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FIGURE 5

Heat map of screened metabolite markers in validation samples. Ctrl: 
control group; AD: alcohol dependence group.

of L-glutamic acid and glutamine significantly increased and decreased, 
respectively, in AD patients. These findings indicated that alcohol 
consumption might be responsible for the altered plasma glutamate and 
glutamine levels. GABA, an inhibitory neurotransmitter in the central 
nervous system, is synthesized from glutamate through a process 
catalyzed by decarboxylase (36). In the current study, we found significant 
upregulation of the serum levels of GABA and 4-hydroxybutanoic acid. 
Previous studies have shown that alcohol promotes the release of GABA 
in the central amygdala (37). Although this may be a cause of increased 
GABA synthesis, it does not justify GABA upregulation in peripheral 
serum. We speculate that the higher serum GABA concentration is due 
to the effect of alcohol on body metabolism. GABA crosses the blood–
brain barrier and affects the central nervous system, influencing the 
progression of AD. 4-Hydroxybutanoic acid,like GABA, has an ethanol-
mimicking effect on the central nervous system (38). In the current study, 
we observed upregulation of serum citric acid levels. Very few studies 
have focused on the effects of alcohol on serum citric acid concentration. 
Notably, none of these studies held any reference value for the 
current study.

The small molecule metabolites in the serum mainly reflect the 
influence of drugs or the disease itself on body metabolism of the 
body. However, it is still unclear how these molecules can affect the 
nervous system. We  propose that some of the small molecule 
metabolites can affect the central nervous system as neurotransmitters 
by passing through the blood–brain barrier, leading to the 
development of mental diseases such as AD.

The metabolic level in AD patients are differing for those of 
controls. A total of 28 significant alteration metabolites was screened 

and metabolic pathway analysis demonstrated that those altered 
metabolites were related to 6 biochemical pathways (i.e., protein 
digestion and absorption; alanine, aspartate, and glutamate 
metabolism; arginine biosynthesis; linoleic acid metabolism; 
butanoate metabolism; and GABAergic synapse). We discovered a 
significant change in 28 metabolites in these six pathways. Of these, 
the levels of 11 metabolites changes by at least 3-fold: GABA, 
4-hydroxybutanoic acid, L-glutamic acid, citric acid, N-acetyl-L-
aspartic acid, L-aspartic acid, (R)-3-hydroxybutyric acid, L-proline, 
oxoglutaric acid, 13-l-hydroperoxylinoleic acid, and L-glutamine. 
Among these, five metabolites with no numerical overlap in their 
concentrations between the AD and the control groups were GABA, 
4-hydroxybutanoic acid, L-glutamic acid, citric acid, and L-glutamine. 
We postulate that these five metabolites could be used as potential 
diagnostic markers for AD.
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TABLE 4 Important metabolites screened for alcohol dependence.

UP or DOWN Metabolite name Fold change

UP gamma-Aminobutyric acid 11.38

4-Hydroxybutanoic acid 5.59
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Citric acid 5.19
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L-Aspartic acid 4.83

(R)-3-Hydroxybutyric acid 4.34

L-Proline 4.16

Oxoglutaric acid 4.15

13-L-Hydroperoxylinoleic acid 3.20

DOWN L-Glutamine 0.24
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