123 research outputs found

    Studying on the emission characteristic of a diesel engine by simulation

    Get PDF
    At present, the problem of environment pollution draws people's attention increasingly. The international communities and organizations established relevant laws to restrict the emission and reduce the harm to human being and environment. In this paper, a numerical simulation model for diesel engine was established by GT-POWER in order to study the NO, CO and HC emissions characteristic of the diesel engine and the model was validated by experimental data. Based on the model, the variable parameters including injection timing, intake air temperature, compression ratio and EGR ratio were carried out. The simulation results showed that with the decrease of CA BTDC, intake air temperature, compression ratio and EGR ratio respectively, the NO emission decreased. However, the CO and hydrocarbon emissions increased

    Study on the mixing performance of static mixers in selective catalytic reduction (SCR) systems

    Get PDF
    Selective catalytic reduction (SCR) is a promising technique for reducing nitrogen oxide (NOx) emissions from diesel engines. Static mixers are widely used in SCR systems before reactors to promote the mixing of ammonia and exhaust streams. This work aims to investigate the effects of the location of static mixers and the volume ratio of two species on mixing quality using the computational fluid dynamics (CFD) method. The simulation results show that a more homogenous ammonia distribution can be achieved at the exit of the pipe if static mixers are placed close to the ammonia injection point or if more ammonia is injected. Another phenomenon found in the study is that the mixing performance of an identical static mixer may behave discrepantly under different flow conditions if using B and C as the evaluating indexes for mixing homogenization

    MAL2 drives immune evasion in breast cancer by suppressing tumor antigen presentation

    Get PDF
    Immune evasion is a pivotal event in tumor progression. To eliminate human cancer cells, current immune checkpoint therapy is set to boost CD8+ T cell-mediated cytotoxicity. However, this action is eventually dependent on the efficient recognition of tumor-specific antigens via T cell receptors. One primary mechanism by which tumor cells evade immune surveillance is to downregulate their antigen presentation. Little progress has been made toward harnessing potential therapeutic targets for enhancing antigen presentation on the tumor cell. Here, we identified MAL2 as a key player that determines the turnover of the antigen-loaded MHC-I complex and reduces the antigen presentation on tumor cells. MAL2 promotes the endocytosis of tumor antigens via direct interaction with the MHC-I complex and endosome-associated RAB proteins. In preclinical models, depletion of MAL2 in breast tumor cells profoundly enhanced the cytotoxicity of tumor-infiltrating CD8+ T cells and suppressed breast tumor growth, suggesting that MAL2 is a potential therapeutic target for breast cancer immunotherapy

    Genome Sequence and Transcriptome Analysis of the Radioresistant Bacterium Deinococcus gobiensis: Insights into the Extreme Environmental Adaptations

    Get PDF
    The desert is an excellent model for studying evolution under extreme environments. We present here the complete genome and ultraviolet (UV) radiation-induced transcriptome of Deinococcus gobiensis I-0, which was isolated from the cold Gobi desert and shows higher tolerance to gamma radiation and UV light than all other known microorganisms. Nearly half of the genes in the genome encode proteins of unknown function, suggesting that the extreme resistance phenotype may be attributed to unknown genes and pathways. D. gobiensis also contains a surprisingly large number of horizontally acquired genes and predicted mobile elements of different classes, which is indicative of adaptation to extreme environments through genomic plasticity. High-resolution RNA-Seq transcriptome analyses indicated that 30 regulatory proteins, including several well-known regulators and uncharacterized protein kinases, and 13 noncoding RNAs were induced immediately after UV irradiation. Particularly interesting is the UV irradiation induction of the phrB and recB genes involved in photoreactivation and recombinational repair, respectively. These proteins likely include key players in the immediate global transcriptional response to UV irradiation. Our results help to explain the exceptional ability of D. gobiensis to withstand environmental extremes of the Gobi desert, and highlight the metabolic features of this organism that have biotechnological potential

    Atractylenolide I enhances responsiveness to immune checkpoint blockade therapy by activating tumor antigen presentation

    Get PDF
    One of the primary mechanisms of tumor cell immune evasion is the loss of antigenicity, which arises due to lack of immunogenic tumor antigens as well as dysregulation of the antigen processing machinery. In a screen for small-molecule compounds from herbal medicine that potentiate T cell–mediated cytotoxicity, we identified atractylenolide I (ATT-I), which substantially promotes tumor antigen presentation of both human and mouse colorectal cancer (CRC) cells and thereby enhances the cytotoxic response of CD8+ T cells. Cellular thermal shift assay (CETSA) with multiplexed quantitative mass spectrometry identified the proteasome 26S subunit non–ATPase 4 (PSMD4), an essential component of the immunoproteasome complex, as a primary target protein of ATT-I. Binding of ATT-I with PSMD4 augments the antigen-processing activity of immunoproteasome, leading to enhanced MHC-I–mediated antigen presentation on cancer cells. In syngeneic mouse CRC models and human patient–derived CRC organoid models, ATT-I treatment promotes the cytotoxicity of CD8+ T cells and thus profoundly enhances the efficacy of immune checkpoint blockade therapy. Collectively, we show here that targeting the function of immunoproteasome with ATT-I promotes tumor antigen presentation and empowers T cell cytotoxicity, thus elevating the tumor response to immunotherapy

    Porcine Reproductive and Respiratory Syndrome Modified Live Virus Vaccine: A “Leaky” Vaccine with Debatable Efficacy and Safety

    No full text
    Porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS virus (PRRSV) is one of the most economically important diseases, that has significantly impacted the global pork industry for over three decades, since it was first recognized in the United States in the late 1980s. Attributed to the PRRSV extensive genetic and antigenic variation and rapid mutability and evolution, nearly worldwide epidemics have been sustained by a set of emerging and re-emerging virus strains. Since the first modified live virus (MLV) vaccine was commercially available, it has been widely used for more than 20 years, for preventing and controlling PRRS. On the one hand, MLV can induce a protective immune response against homologous viruses by lightening the clinical signs of pigs and reducing the virus transmission in the affected herd, as well as helping to cost-effectively increase the production performance on pig farms affected by heterologous viruses. On the other hand, MLV can still replicate in the host, inducing viremia and virus shedding, and it fails to confer sterilizing immunity against PRRSV infection, that may accelerate viral mutation or recombination to adapt the host and to escape from the immune response, raising the risk of reversion to virulence. The unsatisfied heterologous cross-protection and safety issue of MLV are two debatable characterizations, which raise the concerns that whether it is necessary or valuable to use this leaky vaccine to protect the field viruses with a high probability of being heterologous. To provide better insights into the immune protection and safety related to MLV, recent advances and opinions on PRRSV attenuation, protection efficacy, immunosuppression, recombination, and reversion to virulence are reviewed here, hoping to give a more comprehensive recognition on MLV and to motivate scientific inspiration on novel strategies and approaches of developing the next generation of PRRS vaccine

    Optimization of camshaft grinding parameters based on response surface method and NSGA2

    No full text
    In order to improve the grinding quality and efficiency of 20CrMo steel camshaft, response surface method was used to conduct grinding tests. The influence of grinding process parameters on surface roughness was analyzed, and the corresponding regression model was established. Based on the shape characteristics of the workpiece, the instantaneous material removal rate calculation model of the weak part of the workpiece was established. The model of surface roughness and material removal rate was taken as the optimization objective. The second generation of non-dominated sorting genetic algorithm was used to optimize the combination of multi-objective process parameters and test verification was carried out. The results show that the optimal combination of process parameters, namely the linear speed of the grinding wheel 60 m/s, the workpiece speed 96 r/min and the grinding depth 30 ÎĽm, can effectively improve the grinding efficiency under the premise of ensuring that the surface roughness of the weak part meets the machining requirements

    DNA damage response(DDR): a link between cellular senescence and human cytomegalovirus

    No full text
    Abstract The DNA damage response (DDR) is a signaling cascade that is triggered by DNA damage, involving the halting of cell cycle progression and repair. It is a key event leading to senescence, which is characterized by irreversible cell cycle arrest and the senescence-associated secretory phenotype (SASP) that includes the expression of inflammatory cytokines. Human cytomegalovirus (HCMV) is a ubiquitous pathogen that plays an important role in the senescence process. It has been established that DDR is necessary for HCMV to replicate effectively. This paper reviews the relationship between DDR, cellular senescence, and HCMV, providing new sights for virus-induced senescence (VIS)

    Investigation on the effect of ammonia distribution on selective catalytic reduction conversion efficiency

    Get PDF
    The effect of ammonia distribution upstream selective catalytic reduction converter on selective catalytic reduction conversion efficiency has been studied in this paper. The results indicate that the more uniform ammonia concentration distribution upstream converter is, the higher NO<sub>x</sub> reduction rate and lower NH<sub>3</sub> slip can be achieved. By using static mixers fixed in the pipeline upstream converter, ammonia and exhaust streams can be mixed effectively on the limitation of mixing distance for marine selective catalytic reduction system. Different kinds of static mixers could lead to different degree of mixing between ammonia and exhaust streams, which will affect selective catalytic reduction conversion efficiency directly. Then comparing with the complete mixing degrees of ammonia and exhaust streams, selective catalytic reduction conversion efficiency can be used as an evaluation index for static mixers. Based on CFD method, the effect of mixing degrees of different static mixers on selective catalytic reduction conversion efficiency can be obtained by simulating current commercial catalysts with several different kinds of static mixers such as GK mixer, SK mixer, contour mixer, star-shaped mixer. The trend of NO<sub>x</sub> reduction rate and NH<sub>x</sub> slip changing with ammonia distribution and velocity distribution before selective catalytic reduction catalyst layers can be summarized by analyzing the simulating data. The results can be used to help engineering applications
    • …
    corecore