745 research outputs found

    Drosophila glypican Dally-like acts in FGF-receiving cells to modulate FGF signaling during tracheal morphogenesis

    Get PDF
    AbstractPrevious studies in Drosophila have shown that heparan sulfate proteoglycans (HSPGs) are involved in both breathless (btl)- and heartless (htl)-mediated FGF signaling during embryogenesis. However, the mechanism(s) by which HSPGs control Btl and Htl signaling is unknown. Here we show that dally-like (dlp, a Drosophila glypican) mutant embryos exhibit severe defects in tracheal morphogenesis and show a reduction in btl-mediated FGF signaling activity. However, htl-dependent mesodermal cell migration is not affected in dlp mutant embryos. Furthermore, expression of Dlp, but not other Drosophila HSPGs, can restore effectively the tracheal morphogenesis in dlp embryos. Rescue experiments in dlp embryos demonstrate that Dlp functions only in Bnl/FGF receiving cells in a cell-autonomous manner, but is not essential for Bnl/FGF expression cells. To further dissect the mechanism(s) of Dlp in Btl signaling, we analyzed the role of Dlp in Btl-mediated air sac tracheoblast formation in wing discs. Mosaic analysis experiments show that removal of HSPG activity in FGF-producing or other surrounding cells does not affect tracheoblasts migration, while HSPG mutant tracheoblast cells fail to receive FGF signaling. Together, our results argue strongly that HSPGs regulate Btl signaling exclusively in FGF-receiving cells as co-receptors, but are not essential for the secretion and distribution of the FGF ligand. This mechanism is distinct from HSPG functions in morphogen distribution, and is likely a general paradigm for HSPG functions in FGF signaling in Drosophila

    Slightly Fluorination of Alā‚‚Oā‚ƒ ALD Coating on Liā‚.ā‚‚Mnā‚€.ā‚…ā‚„Coo.ā‚ā‚ƒNiā‚€.ā‚ā‚ƒOā‚‚ Electrodes: Interface Reaction to Create Stable Solid Permeable Interphase Layer

    Get PDF
    Improving the performance of cathodes by using surface coatings has proven to be an effective method for improving the stability of Li-ion batteries (LIBs), while a high-quality film satisfying all requirements of electrochemical inertia, chemical stability, and lithium ion conductivity has not been found. In this study, a composite film composed of Al2O3 and AlF3 layers was coated on the surface of Li1.2Mn0.54Co0.13Ni0.13O2 (Li-rich NMC) based electrodes by atomic layer deposition (ALD). By varying the ratio of Al2O3 and AlF3, an optimal coating was achieved. The electrochemical characterization results indicated that the coating with 1 cycle of AlF3 ALD on 5 cycles of Al2O3 ALD (1AlF3-5Al2O3) significantly improved the cycling stability and alleviated the voltage attenuation problem of Li-rich NMC based electrodes by suppressing side reactions between the electrolyte and electrode, as well as inhibiting the transformation of layered Li2MnO3 into a spinel-like phase. After 200 cycles of charge-discharge, the discharge capacity retention of LIB half cells based on 1AlF3-5Al2O3 coated Li-rich NMC electrodes kept at 84%, much higher than that of the uncoated Li-rich NMC (the capacity retention less than 20%)

    A Novel Carrier Loop Based on Adaptive LM-QN Method in GNSS Receivers

    Get PDF
    A well-designed carrier tracking loop in a receiver of the Global Navigation Satellite System (GNSS) is the premise of accurate positioning and navigation in an aircraft-based surveying and mapping system. To deal with the problems of Doppler estimation in high-dynamic maneuvers, the interest on maximum-likelihood estimation (MLE) is increasing among the academic community. Levenberg-Marquardt (LM) method is usually regarded as an effective and promising approach to obtain the solution of MLE, but the computation of Hessian matrix loads a great burden on the algorithm. Besides, a poor performance on convergency in final iterations is the common failing of LM implementations. To solve these problems, an LM method based on Gauss-Newton and a Quasi-Newton (QN) method based on Hessian approximation are derived, making the computation cost of Hessian decline from O(N) to O(1). Then, on the basis of these two methods, a closed carrier loop with adaptive LM-QN algorithm is further proposed which can switch between LM and QN adaptively according to a damping parameter. Besides, an ideal LM with super-linear convergence (SLM) is constructed and proved as a reference of the convergence analysis. Finally, through the analyses and experiments using aircraft data, the improvements on computation cost and convergence are verified. Compared with scalar tracking and vector tracking, results indicate a magnitude increase in the precision of LM-QN loop, even though more computation counts are needed by LM-QN.Peer reviewe

    Genetically Modified Mouse Models Used for Studying the Role of the AT2 Receptor in Cardiac Hypertrophy and Heart Failure

    Get PDF
    The actions of Angiotensin II have been implicated in many cardiovascular conditions. It is widely accepted that the cardiovascular effects of Angiotensin II are mediated by different subtypes of receptors: AT1 and AT2. These membrane-bound receptors share a part of their nucleic acid but seem to have different distribution and pathophysiological actions. AT1 mediates most of the Angiotensin II actions since it is ubiquitously expressed in the cardiovascular system of the normal adult. Moreover AT2 is highly expressed in the developing fetus but its expression in the cardiovascular system is low and declines after birth. However the expression of AT2 appears to be modulated by pathological states such as hypertension, myocardial infarction or any pathology associated to tissue remodeling or inflammation. The specific role of this receptor is still unclear and different studies involving in vivo and in vitro experiments have shown conflicting data. It is essential to clarify the role of the AT2 receptor in the different pathological states as it is a potential site for an effective therapeutic regimen that targets the Angiotensin II system. We will review the different genetically modified mouse models used to study the AT2 receptor and its association with cardiac hypertrophy and heart failure

    Ultra-Thin Coating and Three-Dimensional Electrode Structures to Boosted Thick Electrode Lithium-Ion Battery Performance

    Get PDF
    This paper reports a multiscale controlled threeā€dimensional (3D) electrode structure to boost the battery performance for thick electrode batteries with LiMn1.5Ni0.5O4 as cathode material, which exhibits a high areal capacity (3.5ā€…mAh/cm2) along with a high specific capacity (130ā€…mAh/g). This excellent battery performance is achieved by a new concept of cell electrode fabrication, which simultaneously controls the electrode structure in a multiscale manner to address the key challenges of the material. Particles with ultrathin conformal coating layers are prepared through atomic layer deposition followed by a nanoscaleā€controlled, thermal diffusion doping. The particles are organized into a macroscaleā€controlled 3D hybridā€structure. This synergistic control of nanoā€/macroā€structures is a promising concept for enhancing battery performance and its cycle life. The nanoscale coating/doping provides enhanced fundamental properties, including transport and structural properties, while the mesoscale control can provide a better network of the nanostructured elements by decreasing the diffusion path between. Electrochemical tests have shown that the synergistically controlled electrode exhibits the best performance among nonā€controlled and selectivelyā€controlled samples, in terms of specific capacity, areal capacity, and cycle life

    Controlling a Quadrotor Carrying a Cable-Suspended Load to Pass Through a Window

    Get PDF
    In this paper, we design an optimal control system for a quadrotor to carry a cable-suspended load flying through a window. As the window is narrower than the length of the cable, it is very challenging to design a practical control system to pass through it. Our solution includes a system identification component, a trajectory generation component, and a trajectory tracking control component. The exact dynamic model that usually derived from the first principles is assumed to be unavailable. Instead, a model identification approach is adopted, which relies on a simple but effective low order equivalent system (LOES) to describe the core dynamical characteristics of the system. After being excited by some specifically designed manoeuvres, the unknown parameters in the LOES are obtained by using a frequency based least square estimation algorithm. Based on the estimated LOES, a numerical optimization algorithm is then utilized for aggressive trajectory generation when relevant constraints are given. The generated trajectory can lead to the quadrotor and load system passing through a narrow window with a cascade PD trajectory tracking controller. Finally, a practical flight test based on an Astec Hummingbird quadrotor is demonstrated and the result validates the proposed approach
    • ā€¦
    corecore