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Abstract This study investigates topology optimiza-

tion of energy absorbing structures in which material

damage is accounted for in the optimization process.

The optimization objective is to design the lightest

structures that are able to absorb the required mechan-

ical energy. A structural continuity constraint check is

introduced that is able to detect when no feasible load

path remains in the finite element model, usually as a

result of large scale fracture. This assures that designs

do not fail when loaded under the conditions prescribed

in the design requirements. This continuity constraint

check is automated and requires no intervention from

the analyst once the optimization process is initiated.

Consequently, the optimization algorithm proceeds to-

wards evolving an energy absorbing structure with the

minimum structural mass that is not susceptible to

global structural failure. A method is also introduced to

determine when the optimization process should halt.

The method identifies when the optimization method

has plateaued and is no longer likely to provide im-

proved designs if continued for further iterations. This

provides the designer with a rational method to deter-

mine the necessary time to run the optimization and

avoid wasting computational resources on unnecessary

iterations. A case study is presented to demonstrate the

use of this method.

D. Stojanov
Department of Mechanical and Aerospace Engineering,
Monash University, Clayton 3800, Australia.

B. G. Falzon
School of Mechanical and Aerospace Engineering,
Queen’s University Belfast, Belfast, UK

X. Wu
Department of Materials Engineering,
Monash University, Clayton 3800, Australia.

W. Yan
Department of Materials Engineering,
Monash University, Clayton 3800, Australia.
Tel.: +61 3 9902 0113
Fax.: +61 3 9905 1825
E-mail: wenyi.yan@monash.edu

Keywords energy absorption · topological optimiza-

tion · damage · fracture · BESO

1 Introduction

A common goal for load-carrying structures is to make

them as light as possible. For an energy absorbing struc-

ture there is an additional requirement that it absorb

the loads specified by the design conditions. In the case

of typical metallic structures the energy from a dynamic

load is primarily absorbed through plastic deformation

of the material of that structure. Too much material

deformation will lead to fracture and failure. When de-

signing energy absorbing structures that are efficient

with respect to their mass it is necessary that they have

enough mass to ensure that plastic deformation can oc-

cur without catastrophic fracture and failure, but not

with more mass than necessary to meet the design re-
quirements.

Common types of structures used in energy ab-

sorbers include thin-walled tubes, shells, honeycomb

materials, and foams (Lu and Yu (2003)). The design

and optimization of energy absorbing structures has

received considerable research interest in recent years.

These include the optimization of truss structures for

energy absorption (Pedersen (2003)); axially loaded

tubes (Avalle et al (2002)), where the range between

the lowest and highest crushing forces experienced were

minimised by optimizing the parameters that defined

the tube geometry; and, functionally graded foams (Cui

et al (2009)) capable of minimising peak stresses by

spreading the load over a larger time interval.

Topological optimization, which seeks to optimize

the distribution of material with a given set of design

constraints, to meet one (or more) objectives, has been

applied to maximising stiffness (Chu et al (1996)); opti-

mizing the stiffness of a mechanically controlled struc-

ture (Ou and Kikuchi (1996)); maximising heat con-

duction (Li et al (2004)); maximising the resonant fre-

quency (Du and Olhoff (2007)); and, maximising the

critical load of buckling structures (Neves et al (1995)).
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Topology optimization accounting for geometric and

material non-linearity has been used for the optimiza-

tion of truss (Pedersen (2004)) and continuum struc-

tures (Mayer et al (1996); Jung and Gea (2004); Huang

et al (2007)) for improved crashworthiness. This in-

cludes continuum structures subjected to short dura-

tion transient loads simulated using an explicit finite

element (FE) solver (Forsberg and Larsgunnar (2007)).

There has also been use of topology optimization meth-

ods for energy absorbing structures made of hybrid ma-

terials (Jung and Gea (2006)). An algorithm to halt

the optimization process can make topology optimiza-

tion methods more useful by supplementing/replacing

the analyst’s judgment with an algorithmic process to

determine the point in the optimization process after

which further optimization will not be useful toward

generating an improved design. This problem is also re-

lated to finding the lowest feasible volume ratio1 for a

design and is often not dealt with in the literature; in-

stead, a final volume ratio is often selected arbitrarily

at the beginning of the optimization. The mass of the fi-

nal structure is centrally important to the primary goal

of the analyst and it is therefore inadequate to simply

pick the final volume ratio arbitrarily before the opti-

mization process has begun. The optimization method

presented will seek to find the lowest volume ratio that

still meets the requirement that it avoid failure. An au-

tomated method should decide to halt when further op-

timization will not be useful because it will not be likely

to produce significant further improvements. Strategies

addressing when the optimization should halt have in-

cluded running the algorithm without a halting strat-

egy, then selecting from the most suitable design that

was created during the optimization process (Xie and

Steven (1993)). Most often the final volume ratio has

been pre-selected at the beginning of an analysis, then

the algorithm allowed to run until that volume ratio

is reached, or once reached, to continue an arbitrary

number of iterations at this volume ratio to achieve an

improved result. Sometimes this relationship is speci-

fied indirectly by an upper limit on a performance cri-

terion, which leads to the algorithm halting when it is

exceeded. One criterion is the maximum stress allowed

in any element (Duysinx and Bendsøe (1998)). More

sophisticated performance criteria have been presented

in the literature to rank the results of an optimization

process. These have included the method of extended

optimality (Rozvany et al (2002)), in which the design

was measured by the ratio between the progress of the

designs toward improving the optimization objective,

and the volume ratio. Another example was a perfor-

mance index (Querin (1997)), which was also a sin-

gle scalar quantity that assessed an optimized design

against a performance criterion. A criterion that has

been used with the Bi-Directional Evolutionary Struc-

tural Optimization (BESO) method is the BESO con-

1 The ratio of the volume of a part/design over the volume
of the entire design domain. It is described here using the
symbol Ψ .

vergence criterion (Huang et al (2006)). This measured

how quickly the algorithm had converged between it-

erations and halted once this rate decreased below a

pre-selected value.

Energy absorbing structures may be loaded to the

plastic region, or beyond, to the point of material fail-

ure. To properly model and design these structures re-

quires incorporating material damage into an analysis.

This type of material damage is often simulated in a

finite element (FE) analysis using either the method

of element erosion, or tied nodes with failure. Both of

these methods have been used to simulate the damage

of fragments striking aircraft fuselages (Knight-Jr. et al

(2000); Ambur et al (2001)). Element erosion has also

been used to simulate the penetration of projectiles,

through metal plates, during ballistic impact events

(Børvik et al (2003b); Guo et al (2003)); to simulate

the behaviour of tensile test specimens loaded to fail-

ure (Børvik et al (2003a)); to study high velocity im-

pact of rigid projectiles on beams (Teng and Wierzbicki

(2005)); and, to study perforation from rotor fragments

during a catastrophic turbine failure (Stamper and Hale

(2008)). When deployed in a real world application an

energy absorbing structure would fracture if it were

poorly designed and unable to absorb and transfer the

energy of a load. As described, it is desired to find a

structure that would absorb the energy of a load that

would not experience any failure that caused it to be

unsuitable for service. It is therefore necessary to detect

these fractures when they occur in simulations. This

would make it possible to determine whether a poten-

tial design would successfully absorb the energy of a

load when put into service.

This paper presents a method to optimize the topol-

ogy of energy absorbing structures. The method is

based on BESO with an added constraint that the

structure maintains its integrity after absorbing the en-

ergy of an external transient load. For this paper “main-

taining integrity” will mean a structure in which there

continues to be a load path between the supports and

applied loads. Small amounts of damage are tolerated,

but not amounts sufficient to break this load path. The

topology optimization of energy absorbing structures

is a topic that has previously been addressed. This in-

cludes optimizing structures that deform non-linearly

and which experience plastic deformation. The topic

addressed in this paper is different to optimizing en-

ergy absorbing structures alone. A different problem

to this is one in which the reality of material damage

is addressed. The very mechanism by which an energy

absorbing structure completes its task is by deforming

plastically. Too much of this deformation leads to fail-

ure. It is necessary when applying these optimization

methods that they ensure that the structure be fit for

service, while also completing its task with the min-

imum mass. The solution to be presented allows for

some plastic deformation, including some material ero-

sion, but not sufficient to lead to a critical fracture of

the structure. It allows the designer to specify critical
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regions and to ensure that no fracture takes place be-

tween these critical regions. While these conditions are

met, the optimization method also seeks to achieve a

design that is the most efficient in the mass of material

used to meet the design requirements. The mass effi-

ciency is compromised if it is found necessary to meet

requirements, but it is desired that this compromise

be the minimum necessary. Finally, a halting method

method is specified. This is a method the optimization

algorithm can use to halt the optimization procedure

at a point at which further optimization effort is likely

to only be of minimal use. This works with the volume

ratio history, rather than a performance metric.

This paper begins with an overview in Section 2 of

the method used to optimize energy absorbing struc-

tures with a structural continuity constraint. This in-

cludes an overview in Section 2.1 of the BESO method.

Section 3 gives a description of the continuity constraint

checking algorithm and how it was incorporated to work

with the BESO method. This is followed by Section 4

which describes a halting strategy and how it relates to

the constraint checking algorithm. Section 5 describes a

case study in which this optimization method was ap-

plied. The material model used for the finite element

model is also described. Finally, case study results are

discussed in Section 6.

2 Structural topology optimization of energy

absorbing structures with a material damage

model

The optimization task addressed in this paper was to

design a structural component that would be of min-

imum weight and meet the requirement of absorbing

the energy of a transient mechanical load without gross

structural failure. It is noted that stiffness was not a

design objective for this work and so was not optimized

for during the optimization process.

When a transient, high velocity load is applied to

an energy absorbing structure there is an amount of

energy that will be absorbed by this structure as it re-

sponds to the applied load. A load of sufficient energy

will cause sufficient damage to the structure that it will

fracture and fail. A load of energy less than this suf-

ficient amount will be successfully absorbed and the

structure can be described as having successfully ab-

sorbed the energy of the load applied to it. The quantity

of energy applied to a structure, which it needs to be

able to absorb to successfully meet its design require-

ments, is given by, Θ. The maximum amount that a

structure could absorb, beyond which fracture occurs,

is given by, Θmax. The magnitude of these quantities

is a complex result of the geometry; the strain rate in-

duced by the load; boundary conditions; and, location

of applied loads. What is of interest is that whether

measured quantitatively or not, the consequence is that

when Θ > Θmax the structure will fail (experience a

fracture breaking the load paths between the boundary

and the applied loads). This method has the analyst tag

critical locations on the structure. These elements con-

stitute a set of elements labelled C. If at least one load

path exists between the elements in the set tagged by

the analyst then the structure is considered successful

and meets the constraints. In this way small amounts

of damage that do not destroy the load paths are ac-

ceptable.

The optimization method used a finite element mesh

to represent a 2D domain. It selected a subset of the n

elements in this domain to be the design for a given iter-

ation. Any given design could be described by a vector,

X = (x1 ... xi ... xn), where xi ∈ {0, 1}, for a domain of

n elements. Here 0 and 1 represented the inclusion or

exclusion of element, i, in the design. The optimization

task was to

minimise f (X) ; (1)

subject to Θ ≤ Θmax,

where f (X) is the mass of the structure.

A flow chart of the method is shown in Figure 1. The

initialisation steps, including reading analyst-specified

parameters, and the finite element geometry, were com-

pleted in step 1. Steps 2 to 4 were adapted from pre-

vious work, available in the literature, of applying the

BESO method to optimize energy absorbing structures

(Huang et al (2006, 2007)). The constraint checking al-

gorithm corresponded to steps 5 to 11. After the FE

analysis and optimization completed for each iteration,

the new design was created at step 9 and the optimiza-

tion repeated if the halting condition was not yet met.

For clarity, when an element was included in the

design (xi = 1 for element i) it is described in this paper

as active and inactive/deactivated when not included

(xi = 0). When simulating a transient load using FE

analysis, an element may be deleted and removed from
the FE model for the rest of that iteration’s FE analysis.

This is a mechanism to simulate material damage and

was discussed above and in Section 5.1.2 below. Here

the terms inactive and deleted refer to two specific and

different ideas that should not be confused; the deletion

of an element is unrelated to the deactivation of an

element, which occurred when the optimization method

was generating a new structural design.

2.1 BESO optimization to create high energy density

structures

The BESO process used in this paper is an iterative

method to optimize the topology of a structure (Huang

and Xie (2010); Huang et al (2006)). A finite element

model was analysed at each iteration, corresponding to

step 2 in Figure 1. From these results a sensitivity num-

ber, α, was calculated using data from that iteration’s

FE analysis. This corresponds to step 3. The sensitivity

number was a measure of the corresponding element’s

influence on the objective function. The calculation of

this sensitivity number depends on the optimization
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Constraint
checking

06 - Archive
sensitivity
numbers

Optimisation loop

Start

02 - FEM
analysis

03 - Calculate
sensitivity

values

04 - BESO
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11 - Accept
new model

10 - New
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Yes
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01 - Initialise
optimisation

No

09 – Generate
new design

Fig. 1: Flow chart of the optimization process.

task for which the structure is to be optimized. For

this analysis the optimization task was to increase the

strain energy density of the structure. For an element,

j, the sensitivity number was calculated using

αj =
Vj
V
− Ej

E
(2)

where V and Vj were the total volume of the part and

the volume of element j. Similarly E and Ej corre-

sponded to the total plastic energy absorbed by the

structure and the energy absorbed by element j (Huang

et al (2007)). Use of Eq. (2) to calculate the sensitivity

number caused the BESO method to increase the strain

energy density of the structure. This is the desired re-

sult if what is being sought is a structure that absorbs

energy as efficiently (with regard to structural mass) as

possible.

After the sensitivity numbers were calculated they

were filtered using a smoothing algorithm, at step 4.

The filtering addressed numerical problems that can

develop when using BESO and other topology opti-

mization methods. These include mesh dependency and

checkerboarding and have been discussed in the lit-

erature (Sigmund and Petersson (1998)). Sensitivity

numbers were also calculated for elements that were

previously deactivated, i.e. not part of the design at

the current iteration, to provide a basis for their re-

activation, hence enabling the bi-directionality of the

optimization method (Huang and Xie (2007)). For each

node, elements within an analyst-specified distance, r,

of that node were identified. Node sensitivity numbers,

βk, were then calculated using (Huang et al (2007))

βk =
[V1 ... Vi ... VM ] [α1 ... αi ... αM ]

T

[V1 ... Vi ... VM ] [1 ... 1]
T

(3)

for, M , elements within distance, r, of node, k. Element

i had volume, Vi, and sensitivity, αi.

A new element sensitivity number was calculated

for each element using a procedure similar to that de-

scribed for calculating nodal sensitivity numbers. Here

the same parameter r was used to collect all N nodes

within a distance r of the centroid of each element.

Then, for element i, the new, filtered, sensitivity num-

bers, γi, were calculated as

γi =
[ωr1 ... ωrk ... ωrN ] [β1 ... βk ... βN ]

T

[ωr1 ... ωrk ... ωrN ] [1 ... 1]
T

(4)

where rik was the distance between element i and node

k and ωrk = ω (rik) = r − rik.

Unless a constraint is used, like that described below

in this paper, the volume of the structure will steadily

decrease over successive iterations. Elements may go

though optimization iterations during which they are

deactivated, then reactivated after being inactive (ab-

sent) from the designs of previous optimization itera-

tions. Elements are prioritised by their γ value with a

lower γ leading to removal over elements with larger

values.
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3 Constraint checking and enforcement

The volume of the structure was controlled using a vol-

ume ratio, {Ψ | 0 ≤ Ψ ≤ 1}. It measured the current

volume of the design, as a proportion of the sum of

the volume of all elements in the design domain. For

a material of constant density the mass ratio equalled

the volume ratio. Therefore, minimising the volume of

a structure was equivalent to minimising its mass. The

decision to increase or decrease Ψ was determined by

a series of checks against the structural continuity con-

straint. The current Ψ was decreased at the end of an

iteration where the design constraints were met and

otherwise increased.

Load paths exist in a structure between the location

of boundary conditions and the applied loads. During

a finite element simulation some elements in the model

may be deleted in simulating material damage using

the element erosion method. The continuity constraint

required that a load path continued to exist after the

energy of the applied load was absorbed.

The example given in Figure 2 shows a simple finite

element mesh of quadrilateral elements. There are 20

elements in the entire design domain. These elements

constitute the set, D. A subset of these, shown shaded

in Figure 2a, is active (i.e. selected by the algorithm to

be the design of the structure at this iteration of the

optimization). This is the set Ti for iteration i, with

D\Ti all elements that are not part of the design. Only

elements in Ti are a part of the finite element analysis

at iteration i. Figure 2b is the graph representing the

connectivity relationship between the active elements

of the mesh. Edges are unique and undirected, making

Figure 2b a simple graph.

Finite element analysis was used to test the design

at each iteration of the optimization. This corresponded

to step 2 of Figure 1. The finite element analysis results

may show some elements had been damaged. Two ex-

amples of different possible results from the FE analysis

for this illustrative example are shown in Figure 3 and

Figure 4. In both cases some elements received sufficient

plastic strain that they were deleted during the anal-

ysis. Such elements are shown in red (darker shade).

Their corresponding graphs in Figures 3b and 4b are

subsets of the graph in Figure 2b. Before the analysis,

elements 5 and 16 were selected by the designer as the

ends of the load path across the structure. These two el-

ements constitute the set C; this is the set C described

in Section 2. During any of the structural continuity

constraint checks all elements in C were checked to en-

sure that there was a continuous path of active, non-

deleted elements connecting the entire set. It is easily

seen that the result in Figure 3b has elements 5 and 16

on the same component, satisfying the structural con-

tinuity constraint check and allowing the design to be

accepted. The result in Figure 4 fails this check and is

outside of the prescribed constraints. In this case ele-
ments 5 and 16 lie on two different components, causing

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

(a) Finite element mesh with elements in design Ti

highlighted.

1 2 3 5

6 8 9 10

11 13 14

16 17 18 19
(b) The network corresponding to the model of de-
sign Ti.

Fig. 2: The mesh and network of the design at Ti.

the design to be rejected. This check was performed in

step 5 of the process shown in Figure 1.

In this illustrative example the evolutionary rate,

Ω, was set to 0.05, giving a change of 5% of the volume

of the entire design domain, between iterations. After

the FE results of Figure 3 the algorithm calculated a

sensitivity number, γi, for each of the elements, using

Eq. (4). The next task was to generate a new design for

iteration i + 1. After passing the first constraint check

the total volume ratio was decreased to Ψi+1 = Ψi−Ω.

For a domain of n total elements with a volume ratio

Ψ , there were bn× Ψc elements selected for the design

of the structure, with elements prioritised by the value

γ calculated for that element. Figure 3a shows that ele-

ments 4 and 7 were both inactive at i, but were likely to

have large values of γ as they were near elements that

were deleted. Elements are deleted because they expe-

rience large strains. From Eq. (2) such elements will

have large sensitivity numbers and will be prioritised

over other elements when ranked and a new design is

generated. Conversely, some elements would need to be

removed to meet the smaller volume ratio. If all other

inactive elements at i, and elements 14, 18, and 19 had

the lowest γ they would become inactive at the next

design. This leads to a proposed design that would be-
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

(a) Model at Ti after simulation experiencing light
damage.

1 5

6 9 10

11 13 14

16 17 18 19
(b) The network corresponding to the model of de-
sign Ti after light damage.

Fig. 3: The mesh and network of the design at Ti with

light damage.

come Ti+1(proposed). This design would need to pass

the second continuity constraint, corresponding to step

9 of Figure 1. If Ti+1(proposed) passed the second check

it would become Ti+1; otherwise, Ψ would be increased

by Ω, a new design created, and this process repeated

until the second check also passed. The loop between

steps 7 and 9 will always produce a successful design ex-

cept for the case in which it is not possible to satisfy the

continuity constraint using the entire domain D in the

design. This occurs when D does not contain enough

elements to create a connected path between the mem-

bers of C. Such a problem is impossible to solve and

no optimization process would ever provide a valid so-

lution.

The result in Figure 4 shows that the structure is

unsuitable for these design requirements. This causes an

increase of Ψ and the generation of a new design. The

values of γ used must be those from the last successful

design. The distribution of plastic strain changes with

fracture. The load duration is shorter, leading to less

energy being transferred to the structure. When a frac-

ture destroys a load path, the energy of the load is no

longer transferred through this load path to other areas

of the structure. For this reason only sensitivity num-

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

(a) Model at Ti after simulation experiencing
heavy damage.

1 5

6 10

11

16 17 18 19
(b) The network corresponding to the model of de-
sign Ti after light damage.

Fig. 4: The mesh and network of the design at Ti with

heavy damage.

bers of successful designs can be used. The sensitivity

numbers of successful designs were therefore archived. If

a design failed the first structural continuity constraint

check, the archived sensitivity numbers were used in

place of those calculated from the most recent itera-

tion. Once the check at step 9 passed, the next FE

analysis took place unless the halting method decided

the optimization had completed.

The algorithm used to perform the constraint check

required the generation of an associativity matrix. The

associativity matrix, [A], corresponding to the network

shown in Figure 5 is

A =



1 2 3 4 5

1 1 1 1 0 0

2 1 1 1 0 0

3 1 1 1 0 1

4 0 0 0 1 1

5 0 0 1 1 1

. (5)

The labels correspond to the vertices of the graph. The

graph is undirected and therefore edges connect ver-

tices in both directions, leading to a symmetric matrix.

Connected components were found using a published
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1

2 3 4

5
Fig. 5: Example graph for a structure with small num-

ber of elements.

algorithm (Pearce (2005)) implemented in the Python

SciPy (Jones et al (2001–)) library. The library func-

tion2 accepts a matrix of the type shown in Eq. (5)

and returns a mapping that takes an element number

and returns the component on which that element is

present. This mapping can be checked for each element

in the model. If every member of C is on the same

component the continuity constraint condition is met.

Subsequent work has shown that this method is com-

putationally too expensive for 3D models with a larger

number of elements and more graph edges connecting

neighbouring vertices. A solution that has been imple-

mented in later work but was not used in the particular

examples of this paper is to simply represent a graph

data structure and complete a depth-first or breadth-

first search through the graph beginning at an arbitrary

element in the set C and continuing until all connected

vertices are exhausted, or all remaining elements in C

are visited. Further improvements, such as the use of

the Euclidean metric to speed up searches, as is the case

of the A* algorithm, was seen by the author as unnec-

essary given that the linear time, O(n) to the number

of vertices, to conduct this search was much faster than

the other much more non-linear computations under-

taken during an iteration of an optimization loop, such

as the explicit finite element analysis of the candidate

structure.

The continuity constraint checking method can be

used to determine whether different locations within

a finite element model are connected. In the context

of structural topology optimization it provides verifica-

tion that any design generated is connected between the

pre-selected regions and in the context of optimization

of structures in which material damage is modelled by

element deletion, it allows for the verification that the

simulation showed that the design was able to resist

fracturing between those critical locations. It is fun-

damentally tied to the graph mapped to the discreet

geometry of the finite element mesh.

Similar work for optimizing dual phase materials

(Andreasen et al (2014)) for a mechanical damping ob-

jective used a different method to ensure connectivity in

a structure. The work solved an additional conductiv-

2 Full function name, using version 0.13.2 of the SciPy li-
brary is “scipy.sparse.csgraph.connected components”.

Phase 1 Phase 2

Iteration number

V
ol

um
e 

ra
ti

o 
(Ψ

)

Fig. 6: Two phases in an ideal optimization.

ity optimization problem, different to the damping op-

timization problem that was the design task, in which a

minimum conductivity was specified and which needed

to be enforced by the optimization procedure. Search-

ing through a graph is a straightforward and estab-

lished problem of computer science and discreet geom-

etry. The method described in this paper is a much

simpler solution that runs an algorithm that completes

in linear time to determine whether all elements in C

are connected.

There is always a fixed number of neighbours for

any element. The size of this upper maximum possible

neighbours depends on the type of elements used. For

example, quadrilateral elements can have up to eight

neighbours. Any row or column in Eq. (5) can there-

fore only have up to eight positive values. As the mesh

density increases and the size of the matrix increases,

the proportion of matrix elements that have 0 values

increases. Therefore for this application a sparse ma-

trix representation of the associativity matrix should

be used.

4 Halting method

The constraint checking algorithm controlled the vol-

ume fraction, Ψ , for the structure but did not provide

a mechanism for determining when the optimization

should halt. The general behaviour of this optimiza-

tion method, when beginning with an initial design that

had all elements in D active, can be described as oc-

curring in two phases. This is illustrated in Figure 6.

There is an initial phase in which most iterations suc-

cessfully absorb the transient load. The volume ratio

history between iterations will be almost monotonically

decreasing. As the lowest permissible volume ratio is

reached, the structure will begin to fail more frequently.

In this second phase the volume ratio history remains

unchanged, within a small range of fluctuation. The

method used here to automatically determine when an

algorithm should halt assumes this overall behaviour.

The volume ratio history of Figure 6 is a gross ide-

alisation and in reality a higher level of complexity in

the evolution of Ψ is observed. Some iterations will fail
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Start

01 - Save starting value of Ψ as Ψ
critical

02 - Set counter to zero

03 - Does the design pass
the continuity constraint after

analysis?

04
Is Ψ < (Ψ

critical
 – ρ)?

06 - Reset counter.
Store Ψ as Ψ

critical

08 - Create new design
(next optimisation iteration)

05 - Increment counter

07 - Has the counter
limit been exceeded?

09 - Halt analysis and
use the most efficient
design found so far

End

No

Yes

No
Yes

No
Yes

Fig. 7: Flow chart of the halting method.
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Fig. 8: An ideal optimization in the first phase.

the structural continuity constraint check during phase

1. In this phase these failures are transient and the pro-

cess continues with most iterations producing designs

that satisfy the structural continuity constraint. Simply

halting after the first failed design is not likely to pro-

duce a highly optimized topology. In the second phase

a critical volume ratio is reached. The structure will

always be unable to meet its design goals, i.e. fail the

structural continuity constraint, after Ψ is decreased be-

low this critical value. The volume ratio history for an

optimization will show frequent cycles as Ψ is decreased,

causing a failure against the continuity constraint; this

is followed by an increase in Ψ , a successful design, and

another decrease in Ψ to repeat the cycle.

A counter tracked these cycles, halting the optimiza-

tion when that counter reached a value prescribed by

the designer before the optimization began. This pre-

Iteration number
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e 
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o 
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)

Current position in optimisation

Current best Ψ Best Ψ - ρ

ρ

Fig. 9: An ideal optimization in the second phase.

scribed limit, ξ, was a parameter specified to the opti-

mization by the designer, before the analysis began. At

any point in the optimization history the smallest value

of Ψ for any structure that had satisfied the constraint

check was stored as Ψcritical. The initial value of Ψcritical

used was the value of Ψ at the beginning of the opti-

mization. For the work in this paper this initial value

was always 1.0. The counter halting the optimization

was initially zero. Both of these bootstrapping opera-

tions are shown at steps 1 and 2 of Figure 7. Figures

8 and 9 show the progress of an ideal optimization at

two stages. The first stage is shown in Figure 8. Two

horizontal lines correspond to Ψcritical, the higher of the

lines, and Ψcritical−ρ, the other. The scalar parameter,

ρ, was provided by the designer before the optimization.

This was the second of the two parameters used by the

designer to control the automated process of halting.

Together ξ and ρ would determine when the optimiza-

tion would halt. At each iteration a design would be

created that would either pass or fail the first struc-

tural continuity constraint check. This occurred at step

5 of Figure 1, corresponding also to step 3 of Figure 7.

If the design failed it caused the counter to increment

at step 5 of Figure 7. If Ψ , for a successful design, had

fallen below the line of Ψcritical − ρ it would reset the

counter to zero and update Ψcritical. This was checked

at step 4 and if found to have occurred would trigger a

reset at step 6. The counter would be set to zero and

Ψcritical updated to the lowest Ψ of any design that had

passed the structural continuity constraint after anal-

ysis. The result of this is shown in Figure 9 where a

steady decrease of Ψ caused this floor to be pushed

lower. The optimization is now in phase two and the

volume ratio stays approximately steady. The floor can-

not be reached because further decreases of Ψ lead to

failed designs, which lead to increases of Ψ . At step 7

the counter was checked and found to have reached its

limit. In doing so it caused the optimization to halt and

the task was complete.

It has been discussed in literature, e.g. (Huang et al

(2006)), that the most efficient design found using the

BESO, or other similar methods, will not necessarily be

the global optimum. The halting method allowed for a

rational, automated, approach to searching for a design
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but limiting the search once a local optimum had likely

been reached. There are transitions between spaces of

different local optima. These occur, as for the regular

BESO method, when there is a topology change, often

coinciding with a failure of the continuity check. There

are also changes that are coincident only with differ-

ent geometries, rather than topology. These failures will

usually correspond to a search toward a different local

optimum. In this regard the complete method will com-

plete after searching through several spaces of different

local optima. This convergence speed can be controlled

by the selection of ρ and the counter limit. Generally,

selecting larger values for these parameters will lead to

a slower convergence speed.

5 Case study

The case study used to demonstrate this optimization

process is shown in Figure 10. The 2D model was simi-

lar to a previously published example geometry (Huang

et al (2007)). It was a vertically symmetric model of size

L ×W = 0.2m2. The model had two supports at dis-

tances between D1 = 0.15m and D2 = 0.22m from the

nearest edge. A section thickness of 0.01m was used.

The round, rigid impactor shown at the top of Figure

10 had an initial vertical velocity in the downward direc-

tion. The optimization exercise was repeated 27 times

using different parameters for the impactor mass, im-

pactor radius, and initial velocity. Case study 14 em-

ployed median values of all parameters investigated.

A value of r = 0.01 was used in this analysis for

the user selected parameter, r, described in Section 2.1.

The initial Ψ was 1.0 with Ω = 0.01. The BESO algo-

rithm does allow an initial value of Ψ < 1.0 (Huang

et al (2006)), however this was not used for this study.

The structure was defined using symmetry to analyse

only one half of the model in Abaqus/Explicit with

10, 240 CPS4R elements. A convergence study of the

mesh showed that there was convergence in the kinetic

energy and energy absorbed by the structure, using a

lower mesh density.

H = 0.2m

W = 1.0m

D  = 0.15m

D  = 0.22m

r

1

2

Fig. 10: Model dimensions

5.1 Material model

The material modelled in this analysis was aluminium

alloy Al 2024T3/T351. Elastic material behaviour was

modelled using a Young’s modulus of, E = 73GPa,

and Poisson’s ratio of, ν = 0.33. The remaining con-

stants used are listed in Table 1. Plastic material prop-

erties were modelled using the Johnson-Cook plasticity

model (Johnson and Cook (1983)). Material damage

initiation (see below) was modelled using the Johnson-

Cook damage model (Johnson and Cook (1985); Das-

sault Systèmes (2011); Kay et al (2007)) and damage

evolution was also accounted for.

5.1.1 Johnson-Cook plasticity model

The Johnson-Cook plasticity model was used to model

the plastic material behaviour for this analysis. The

model gave a yield stress, σy, as a function of strain

(equivalent plastic strain), ε̄pl, strain-rate, ˙̄εpl, and ma-

terial temperature, T , i.e. σy (ε̄pl, ˙̄εpl, T ). This function

was defined by

σy (ε̄pl, ˙̄εpl, T ) =

[A+B (ε̄pl)
n
]
[
1 + C ln

(
˙̄εpl

∗)]
[1− (T ∗)

m
] . (6)

The equivalent plastic strain rate, ˙̄εpl, was regu-

larised against a reference strain rate. The value 1.0 or

a quasi-static strain rate is usually used with this ma-

terial model. This then gave ˙̄ε∗pl ≡ ˙̄εpl/ ˙̄εpl0 . Similarly,

the variable, T ∗, was regularised using

T ∗ ≡


0 for T < T0
T−T0

Tm−T0
for T0 > Tm .

1 for T > Tm

The subscript, m, denotes the melting temperature and

the subscript 0 denotes the reference temperature, usu-

ally taken as room temperature in Kelvin.

5.1.2 Damage initiation and damage evolution in

Abaqus

Modelling damage in Abaqus/Explicit involves defining

the conditions for damage initiation and damage evo-

lution. Figure 11 shows a simplified one-dimensional

stress-strain response of a ductile material loaded to

failure. As the strain increased the material transitioned

from initially elastic during 1-2, to plastic during 2-3.

Damage initiated at 3, followed by material degreda-

tion, 3-5, until complete failure at 5. The damage initi-

ation material model specified the location of 3 and the

damage evolution model described the deviation of the

material model from the theoretical plastic response.

The path 3-5 is the path actually taken by the material

and 3-4 is the path of the theoretical plastic material if

damage were not accounted for.

5.1.2.1 Damage Initiation A change in the material re-

sponse due to material damage occurs after position 3,

in Figure 11. Between 2-3 a state variable, the criterion

for damage initiation, {ωD | 0 ≤ ωD ≤ 1}, was incre-

mented until it reached its critical value. This critical
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Fig. 11: Schematic stress-strain response for a damaged,

ductile material.

value is typically set to 1.0, as it was for the simula-

tions in this paper. After this value was reached the

material model transitioned from damage initiation to

damage evolution. The damage initiation criterion, ωD,

was incremented at each timestep by

∆ωD =
∆ε̄pl

ε̄plD (µ, ˙̄εpl)
(7)

where ∆ε̄pl was the equivalent plastic strain in an el-

ement during a timestep. The value ε̄plD was the strain

at which damage initiated. This was a function of the

stress triaxiality, µ, and the equivalent plastic strain

rate at the current timestep, ˙̄εpl. It was recalculated at

each timestep (Dassault Systèmes (2011)). The func-

tion, ε̄plD
(
µ, ˙̄εpl

)
, used in this analysis, was based on the

Johnson-Cook damage criterion

ε̄plD
(
µ, ˙̄εpl

)
=

[D1 +D2 exp (−D3µ)]
[
1 +D4 ln

(
˙̄ε∗pl
)]

[1 +D5T
∗] (8)

where ˙̄ε∗pl = ˙̄εpl/εpl0 . Here ˙̄εpl was the strain rate at a

given increment and εpl0 was a reference strain rate. A

value of 1.0 or a quasi-static strain rate is usually used.

The regularised temperature, T ∗, was defined as for the

Johnson-Cook plasticity model. The constants Dn for

n = 1 .. 5 are obtained through test results for each

material and fitted to observed data (Kay et al (2007)).

5.1.2.2 Damage Evolution When ωD reached 1.0 the

material response transitioned to section 3-5 of Figure

11. The overall energy absorption can be defined by

specifying one of either the total strain or energy ab-

sorbed before failure; with one of the latter two param-

eters derived from the other. For this analysis a linear

curve for 3-5 was used and a plastic displacement at

failure, ūplf = 2.0 × 10−5m. Here ū = Lε̄pl and L, the

Table 1: Material constants for the models used in this

analysis.

Johnson-cook plasticity model

A B n m C
369 × 106MPa 684 × 106MPa 0.73 1.7 0.0083

Johnson-cook damage model

D1 D2 D3 D4 D5

0.31 0.045 -1.7 0.005 0

Reference values

Tmelt Troom ε̇0
775K 294K 1

Displacement at failure (ūpl)
2.0 × 10−5m

characteristic length of the element, was the distance of

the diagonal across that element.

6 Results and discussion

The optimization method was tested by applying it to

a case study in which a projectile impacted on a struc-

ture. This two dimensional model considered variations

in the mass, radius, and initial velocity of the impactor.

Their values and the initial result data are given in Ta-

ble 2. Figure 13 shows a linear relationship between the

energy of the projectile and the mass of the optimal

structure that resulted from the optimization method.

Material in the structure, when deformed plastically,

will absorb energy from the projectile. If there is a min-

imum volume ratio that any final structure must have,

to absorb all the projectile’s energy, then an optimiza-

tion method would seek to find a successful design that

is as near to this value as possible. This minimum mass

would be larger for a load that transfers more energy

onto the structure. This is the relationship shown by

Figure 13 where the final mass varied with the projec-

tile energy.

To illustrate the relationship between the amount

of projectile energy and the final volume ratio a selec-

tion of examples is shown. Their points on the graph in

Figure 13 are highlighted with a circle, diamond, trian-

gle, and square; corresponding to cases 1, 14, 24, and 27.

The final results are shown in Figure 12 and Figure 14a.

Both the graphed results in Figure 13 and the result-

ing designs themselves show that there is a very close

relationship between the final mass and the amount of

energy of the load, with greater energy leading to a

larger mass ratio for the final result. In these examples

all structures shared the same topology except for case

27 which featured several voids. This was the trend ob-

served, that more complex topologies tended to occur

at higher amounts of absorbed energy, which also corre-

sponded to higher volume ratios. Voids tending to dis-

appear as the volume ratio was decreased. The results

in Table 2 show that the only designs with voids were

those corresponding all from the two groups with the
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(a) Case study 1 - iteration 108.

(b) Case study 24 - iteration 129.

(c) Case study 27 - iteration 82.

Fig. 12: Resulting designs for case studies for applied

loads of different magnitudes of energy.

Fig. 13: Final volume ratios with initial impactor kinetic

energy.

largest amount of absorbed energy and case 19, which

also featured one void.

Case study 14 had all three parameters at the me-

dian level. Optimization results for this case study are

shown in Figures 14 to 16. The final result in Figure

14a shows the geometry without displacement and with

the deleted elements highlighted. This is an example of

a successful design that was assessed by the continu-

ity constraint checking algorithm. Despite experienc-

ing a small number of deleted elements, the structure

was still able to contain the loading, successfully ab-

sorbed the projectile energy, and there was still a load

path between the impact location and the supports af-

ter the energy was absorbed. Compare this with Figure

14b where the unsuccessful design experienced fractures

breaking the load paths to the supports.

The distribution of plastic energy for case study

14, before optimization, is shown in Figure 15a. Al-

most all plastic energy is absorbed either near the im-

pact location or near the supports. The distribution

(a) Design meeting continuity constraint – iteration 123.

(b) Design not meeting continuity constraint – iteration 124.

Fig. 14: Examples of continuity constraint satisfying

and failing designs generated during case study 14 –

damaged elements orange (lighter colour).

(a) Distribution of plastic energy before optimization of case
study 14.

(b) Plastic energy absorbed

Fig. 15: Plastic energy absorption before and after op-

timization for case study 14.

after optimization is shown in Figure 15b. Here the

plastic energy is absorbed more evenly throughout the

structure. This is confirmed quantitatively in Figure 16

where the distribution of elements by plastic energy ab-

sorbed is shown in a pair of histograms. In the first,

corresponding to the model shown in Figure 15a, the

largest subset of elements is of those elements absorb-

ing the least energy. This is two orders of magnitude

larger than the next subset (note the broken vertical

axis). Most elements absorbed little or no energy, with

the size of subsets decreasing with energy absorption

for those elements. At the far end there was a sharp

increase in the histogram. This jump corresponded to

deleted elements. Although the loading history for ele-
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Fig. 16: Histograms of plastic energy absorbed before

and after optimization for case study 14.

ments may vary, there was an approximate maximum

plastic energy that an element would absorb before it

was deleted from the finite element model. A deleted el-

ement would not absorb further energy, leaving a peak

at the far end of the first histogram. This contrasts with

the other histogram, corresponding to the optimized de-

sign. More elements dissipated larger amounts of plas-

tic energy. There was also a shift away from the far

end. There were fewer elements that experienced large

enough strains—i.e. dissipated enough energy through

plastic deformation—to be deleted. This shift in the

distribution of plastic energy occurred together with a

decrease in the stiffness of the structure. This is visi-

ble in Figure 17 where the number of elements deleted

during the progress of the optimization, is shown. At se-

lected itations the corresponding design is shown, with

the undisplaced geometry outlined and the displaced

geometry shown shaded. There was a sharp drop in

the number of elements deleted between approximately

75 and 100 iterations into the optimization. The struc-

ture changed from small to large displacements within a

small number of optimization iterations. By increasing

the displacement over which the energy of the transient

load was absorbed, it caused the structure to absorb

more energy through a global response. A global re-

sponse allows for more of the structure to be involved

in absorbing the energy of the load, leading to the

shift shown in Figure 16. This is visible in Figure 15a

where much of the plastic energy is shown to be ab-

sorbed near the impact location, compared with Fig-

ure 15b. Also in Figure 18 is the volume ratio history

for case study 14, shown in the blue/broken line, along

with the energy absorbed by the structure, shown us-

ing the green/unbroken line. While the volume ratio

is decreasing in stage 1, the energy absorbed increases

slightly. This is a result of a decrease in the stiffness

in the structure, allowing it to absorb slightly more en-

ergy from the projectile without it ricocheting away.

Once stage 2 some designs are failures (marked on the

green/unbroken line). These will often absorb far less

energy as the structure fails before all of the projectile

Fig. 17: Number of elements deleted during optimiza-

tion of case study 14.
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Fig. 18: Volume ratio history and energy absorbed for

case study 14.

energy is absorbed. These are often at the bottom of

a sharp trough before the design is recovered and the

energy absorption recovers again.

The increased displacement occurred as plastic

hinges began to form during simulation in the FE analy-

sis step. The distribution of plastic energy dissipation of

the final design in Figure 15 before and after optimiza-

tion shows that the depth of plastic energy dissipation

near the impact location is much greater before than af-

ter the optimization. There is a self-reinforcing process

where this buckling allows the energy to be dissipated

away from the impact location and to a shallower depth

within the structure. This allows for a thinner structure

that allows for greater buckling. It shows that for this

combination of load, material, and boundary conditions

the sensitivity number calculation in Eq. (2) will tend to

generate thin structures with large amounts of buckling

if stiffness is not a focus of the optimization method.

There were two conditions that were identified

which, if they emerged, would lead to an optimization

that was inefficient in the time taken to reach a final

solution or in the final volume ratio of the structure.
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They both related to selection of the elements in set C.

If elements within this set were deleted during a finite

element analysis, the algorithm would decide the com-

ponent had fractured. Figure 19 shows an example from

test case 17 in which a crack would form in line with

the direction of the applied load. This crack would dis-

appear in later iterations. Such a crack was acceptable

under the structural continuity constraint if it did not

fracture the component. However, the algorithm that

calculated the structure’s status against this constraint

gave the status as violating for iterations in which this

crack appeared. Figure 20 shows the volume ratio his-

tory over the course of two different optimizations of

test case 17, together with test case 14 for compari-

son. During the first attempt an element in C was in

the path of the crack. After this optimization the el-

ement was moved to a nearby location just outside of

the path of this crack. The plot shows the difference

in the volume ratio history caused by the design being

incorrectly classified for some iterations, leading to un-

necessary increases in Ψ . It also shows that despite this,

the algorithm was robust enough to still reach an opti-

mized design, albeit requiring more optimization time

than when the analysis was repeated. The solution was

to move the particular element in C to a nearby loca-

tion just outside of the crack path. A comparison of

elements in C against the list of elements deleted dur-

ing an analysis could identify when this event has oc-

curred and could be used to display warning messages

to the analyst to address this if necessary. This exam-

ple illustrates that the selection of elements in C need

not strictly include those elements on which loads and

boundary conditions were applied to be of practical use.

Instead elements nearby to those on which loads were

applied were selected because of the advantage this pro-

vided for the analysis.

Once an unsuitable design is encountered the con-

straint checking method will cause the structure to

increase in volume until a suitable design is re-

encountered. This causes the optimization to branch

into a different space with a different local optimum to-

ward which the optimization then heads as it begins to

again reduce structural mass, converging toward a dif-

ferent solution. Experience from the case study showed

that such an even causes a jump in volume ratios dur-

ing phase 2 which leads to a small, transient increase in

Ψ that then decreases as the optimization moves back

toward the new local optimum. In the context of the op-

timization method this would cause a resetting of the

counter limit and the optimization continues as usual.

From the case study this was only of practical impor-

tance when too large a value of Ω was selected for the

optimization. Otherwise smaller values of Ω tended to

lead to more stable optimizations. This is illustrated in

Figure 20.

If an element were selected and later optimized away

it would similarly have caused the algorithm imple-

menting the structural continuity constraint to incor-

rectly classify designs as failing against the constraint

(a) Crack formation in case study 17 at iteration 91.

(b) Crack not forming for case study 17 at iteration 92.

Fig. 19: Intermittent cracks formed during optimization

of case study 17.
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Fig. 20: Volume ratio history for case study 17.

when the structure had in fact not fractured. The most

straightforward solution was to select elements in C

near to regions of relatively higher sensitivity numbers.

For this analysis elements with large amounts of plastic

strain energy density also had large sensitivity num-

bers. Selecting elements in C with large values of γ

would avoid this problem. An automated solution, not

used in this paper, would be to check that the element

is deactivated and automatically relocated to a nearby,

suitable location, that still enforced the connectivity

constraint. Figure 15a shows that for the analysis of an

energy absorbing structure the location of applied loads

and supports are the areas likely to have high sensitiv-

ity values. For this reason this problem is more likely

to emerge if the analyst selects elements in C that are

not near to, or the elements themselves, that have loads

and boundary conditions applied on their boundaries.

The case study was repeated across a range of dif-

ferent parameters and repeated 27 times with results

shown in Table 2. Each of these 27 tests held all con-

ditions the same except for three variables which were

changed between the tests. To show the generality of the

method used to enforce the continuity constraint, test



14 Daniel Stojanov et al.

case 14 was modified in the position of the boundary

conditions and loads. These cases were no longer sym-

metrical. This necessitated modelling the interaction

without the advantage of symmetry to speed process-

ing, however, the results were equivalent to the faster

case and no changes were made to the optimization

process. In the first of these modified cases, shown in

Figure 21a, all aspects of the optimization process were

unchanged. The model was modified only by the addi-

tion of a single extra impactor to the right, at a posi-

tion of 0.75m, or 3/4 of the width of the structure. The

second modified case, shown in Figure 21b changed the

boundary conditions creating a cantilever structure. No

changes were made to the loads from the example in

Figure 21a.

It is noted that although loads and boundary condi-

tions had been discussed in connection to the continuity

constraint check in Figure 2, this was only made in the

context of how the method can be best applied by the

analyst in order to achieve the desired results. The load

and boundary conditions are not used by the algorithm

implementing the constraint check and so their change

will not affect the results obtained for a given geome-

try and element set C (see Figure 3). The location of

elements constituting C are shown in the diagrams as

crosses. For the example shown in Figure 21a no change

was made to C. The constraint still required that the

span between the two supports kept a load path after

loading. In the second case, shown in Figure 21b the

change in boundary conditions resulted in a condition

in which the most suitable geometry would likely have

been one in which the bottom surface, near the supports

in the previous example, would have been removed by

the optimization method. The critical load path existed

between the support on the left of the structure and

the two locations at which loads were applied. These

positions are shown in Figure 21b. They were the new
locations making up the set C. Except for this change

in the set C the rest of the optimization proceeded un-

changed, including use of the halting method to halt

after 3 cycles.

Results from the optimization are shown in Figure

22. What is observable is that despite changes in bound-

ary conditions and loads there was no problem for the

constraint checking algorithm to enforce the connectiv-

ity constraint. This can be expected, given that bound-

ary conditions and loads are not directly used in any

calculation of the algorithm and continued to execute

as expected. Results are shown at iterations 105 and

111, as selected by the halting method.

It is noted that for the example shown in Figure

21b with results in Figure 22b the set C was changed

from that used in all other cases discussed. If static

loads are used, the supports and loads are applied to the

surface/boundary and are available in the description

of the model used by the finite element analysis. This

information could be used to automatically populate

C with the elements on which loads and boundaries

are applied, removing the need for human tagging of

H = 0.2m

W = 1.0m

D  = 0.15m

D  = 0.22m

r

1

2

r

0.25m

(a) Case with one additional impactor.

H = 0.2m

W = 1.0m

r r

0.25m

(b) Case with cantilever and additional impactor.

Fig. 21: Diagrams of additional cases with modified

loads and boundary conditions.

(a) Case with one additional impactor.

(b) Case with cantilever and additional impactor.

Fig. 22: Results from additional cases with modified

loads and boundary conditions.

elements in C, however this approach was not used in

this work.

For this analysis all test cases were allowed to run

for 200 iterations. For each case the lowest successful

volume ratio reached was compared against the halting

method described in Section 4 above. The results are

shown in Table 3. This table includes two groups of re-

sults. The first is the volume ratio of the most efficient

design and the iteration at which it was first encoun-

tered during the optimization. This group of columns

is headed with “Best design”. The other group includes

the best design reached when using the halting method

and the iteration at which halting took place. These are

shown for the case when the method would halt the op-

timization after 2, 3, 4, and 10 failures of the continuity

constraint condition, without resetting the counter (de-

scribed in Section 4 above), before halting. This allowed

for a comparison between the halting method, repeated

using several user-defined values for the counter limit,
against a longer optimization of 200 iterations. The iter-

ation at which transition to phase 2 of the optimization
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Table 2: Results of 27 case studies.

Test Mass Velocity Radius Final Elements No. of Last
no. (kg) (ms-1) (m) volume deleted voids in iteration

ratio at final Ψ topology no.

1 0.2 100 0.025 0.07 4 0 108
2 0.2 100 0.050 0.08 4 0 135
3 0.2 100 0.075 0.07 4 0 93
4 0.2 150 0.025 0.07 12 0 100
5 0.2 150 0.050 0.08 7 0 175
6 0.2 150 0.075 0.08 5 0 147
7 0.2 200 0.025 0.08 59 0 125
8 0.2 200 0.050 0.10 7 0 128
9 0.2 200 0.075 0.10 14 0 113

10 0.4 100 0.025 0.07 43 0 169
11 0.4 100 0.050 0.09 9 0 122
12 0.4 100 0.075 0.09 2 0 108
13 0.4 150 0.025 0.14 69 0 155
14 0.4 150 0.050 0.11 4 0 123
15 0.4 150 0.075 0.11 8 0 194
16 0.4 200 0.025 0.16 152 1 98
17 0.4 200 0.050 0.14 96 1 157
18 0.4 200 0.075 0.17 13 1 169
19 0.6 100 0.025 0.14 21 1 104
20 0.6 100 0.050 0.10 19 0 122
21 0.6 100 0.075 0.10 23 0 166
22 0.6 150 0.025 0.12 81 0 123
23 0.6 150 0.050 0.15 22 0 159
24 0.6 150 0.075 0.15 20 0 129
25 0.6 200 0.025 0.20 241 1 104
26 0.6 200 0.050 0.22 140 1 192
27 0.6 200 0.075 0.26 15 4 82

Table 3: Final volume ratios using the halting algorithm.

Test Best design Best design seen using halting strategy
case 2x Ratio Halted 3x Ratio Halted 4x Ratio Halted 10x Ratio Halted

1 0.07 108 0.16 2.29 97 0.07 1.00 134 0.07 1.00 136 0.07 1.00 161
2 0.08 118 0.11 1.38 93 0.11 1.38 94 0.11 1.38 100 0.09 1.13 130
3 0.07 93 0.07 1.00 96 0.07 1.00 100 0.07 1.00 104 0.07 1.00 123
4 0.07 100 0.07 1.00 104 0.07 1.00 107 0.07 1.00 109 0.07 1.00 122
5 0.08 128 0.1 1.25 107 0.1 1.25 109 0.09 1.13 115 0.09 1.13 132
6 0.08 111 0.1 1.25 95 0.1 1.25 97 0.1 1.25 103 0.09 1.13 120
7 0.08 94 0.09 1.13 118 0.09 1.13 119 0.08 1.00 127 0.08 1.00 140
8 0.09 129 0.11 1.22 105 0.11 1.22 107 0.11 1.22 109 0.1 1.11 144
9 0.1 103 0.18 1.80 86 0.18 1.80 89 0.1 1.00 117 0.1 1.00 133

10 0.19 98 0.2 1.05 101 0.2 1.05 111 0.2 1.05 113 0.2 1.05 156
11 0.09 109 0.11 1.22 99 0.1 1.11 106 0.1 1.11 115 0.09 1.00 131
12 0.09 104 0.09 1.00 118 0.09 1.00 120 0.09 1.00 126 0.09 1.00 143
13 0.14 89 0.14 1.00 162 0.14 1.00 164 0.14 1.00 166 0.14 1.00 187
14 0.11 95 0.12 1.09 98 0.12 1.09 100 0.12 1.09 101 0.12 1.09 107
15 0.11 144 0.13 1.18 94 0.13 1.18 95 0.13 1.18 97 0.13 1.18 113
16 0.16 90 0.17 1.06 95 0.16 1.00 101 0.16 1.00 102 0.16 1.00 117
17 0.14 132 0.18 1.29 101 0.18 1.29 103 0.18 1.29 145 0.18 1.29 119
18 0.17 169 0.24 1.41 95 0.22 1.29 104 0.22 1.29 106 0.21 1.24 116
19 0.14 88 0.14 1.00 113 0.14 1.00 115 0.14 1.00 118 0.14 1.00 150
20 0.1 100 0.11 1.10 109 0.11 1.10 111 0.1 1.00 124 0.1 1.00 139
21 0.1 125 0.44 4.40 59 0.16 1.60 95 0.16 1.60 96 0.11 1.10 147
22 0.12 108 0.19 1.58 95 0.13 1.08 111 0.13 1.08 112 0.12 1.00 130
23 0.15 113 0.17 1.13 107 0.16 1.07 116 0.16 1.07 117 0.16 1.07 128
24 0.15 125 0.19 1.27 98 0.19 1.27 99 0.19 1.27 100 0.17 1.13 117
25 0.2 96 0.21 1.05 98 0.21 1.05 101 0.2 1.00 106 0.2 1.00 117
26 0.22 128 0.3 1.36 75 0.28 1.27 82 0.28 1.27 105 0.27 1.23 96
27 0.25 83 0.25 1.00 86 0.25 1.00 87 0.25 1.00 88 0.25 1.00 100
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Table 4: Changes in Ψ waiting for three instead of two

failed models.

Test case Reduction in Ψ Additional iterations

1 9% 37
10 0% 10
21 28% 36
22 6% 16

Table 5: Changes in Ψ waiting for four instead of three

failed models.

Test case Reduction in Ψ Additional iterations

9 8% 28
20 1% 13

occurred varied, but was approximately less than 100

iterations. This allowed for comparison against results

in which at least half of the optimization was at or near

the critical volume ratio.

Increasing the counter limit would cause a longer

search, which may have found a better design, at the

cost of increased computation. A larger limit required

more failures against the continuity constraint condi-

tion before halting. In changing from two to three re-

peated failures of the constraint condition, most test

cases extended their optimization runs for fewer than

ten iterations before halting. Four extended the opti-

mization run by ten or more. These are shown in Table

4. Three of these four case studies also arrived at im-

proved designs. The exception was test case 10 which

experienced ten further iterations. In this case the in-

crease of 1 to the counter limit only led to large in-

creases in the computation time for case studies that

also produced improved designs. A similar situation

held when going from three to four failures for the

counter limit. These results are shown in Table 5. Here

two test cases experienced more than ten additional

iterations. These also experienced an improvement in

reducing the volume of the best successful design. The

change from four to ten corresponded to significant in-

creases in the number of iterations without significant

changes to the mass of the best designs. There appeared

to be a range, toward the lower end of the interval be-

tween four and ten after which significant increases in

optimization time did not correspond to finding signif-

icantly more efficient designs.

There is a relationship between the size of the incre-

ment/decrement by which material is added or removed

from the model and the volatility in the volume ratio

history during phase 2 of the optimization. This effect

is illustrated in Figure 23 where the optimization of test

case 14 was repeated for different values of the evolu-

tionary rate, Ω. Here the optimization was allowed to

run for 200 iterations, as for the test cases with results

in Table 3, except for Ω = 0.0025 where the evolu-

tionary rate was so low that it required significantly

further iterations to complete. There is an approximate

relationship that a larger value of Ω will lead to greater

variability in phase two of the optimization.

Increasing Ω corresponded to steeper decreases in

volume ratio in the first phase of the optimization. Halt-

ing at the most suitable iteration is an easier problem to

solve for smaller adjustment ratios. This would suggest

that there is an ideal compromise between the extended

time the optimization remains in phase 1, and the in-

creased difficulty that an optimization method would

have to reach a converged solution. Previous results on

optimizing structures for maximum stiffness (Chu et al

(1997)) and for even stress distributions (Abolbashari

and Keshavarzmanesh (2006)) have found that the final

result for 2D structures is not significantly diminished

with increasing removal ratios, however, results for the

former were all had similar shapes whereas the latter

produced similarly performing results with different fi-

nal shapes. The experience from this paper is that a

value of Ω = 2 produced large variations within phase

2 of the optimization.

It is already established and discussed in literature

that the BESO optimization method, by simultaneously

adding and removing material, can provide suitable so-

lutions to some non-convex problems. Results from this

case study show that different designs are obtained at

the same volume ratio during the course of an optimiza-

tion. With regards to the convexity of this optimization

problem, the algorithm is exploring a space outside that

which would have been explored using simply the BESO

method with a fixed volume ratio. The first suitable so-

lution found before phase two begins is not necessarily

the best found after further optimization iterations. Re-

sults in Table 3 illustrate during the optimization where

improved solutions were reached after revisiting a par-

ticular volume ratio. In fact, some designs were demon-

strated to be suitable at volume ratios lower than other

failing designs at higher volume ratios.

If a larger counter limit than necessary is chosen,

it will cause the optimization to remain in phase two

for a longer time without producing successful designs

of volume ratio lower than those already encountered.

Therefore the value of ρ selected must be larger than

the amount of variation experienced during the regular

cycling of stage two, but less than the range of Ψ during

stage 1. In the case of this case study the variation was

between 2-10% for the range of cycles in stage 2 and

90% for the range of Ψ in stage 1. Therefore a value

of ρ between these two values (between 0.1 and 0.9)

would have been suitable to identify the transition to

stage 2. This is also illustrated in Figure 20. The value

of ρ should be at the lower end of that range, with-

out exceeding the lower limit. This avoids misclassify-

ing some failed designs in stage 1 as occurring in stage

2, although, as shown in Figure 20, this transition be-

tween stages 1 and 2 can often be continuous and this

is managed by the selection of the counter limit.

This halting method worked by monitoring the vari-

ation in Ψ and halting once this variation behaved in

a manner characteristic of a structure unlikely to yield
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Fig. 23: Volume ratio history for different adjustment

ratios.

further results. It was reasoned that a small number

of small cycles in Ψ were behaviour indicative of this

condition, with small defined by the analyst. Previ-

ous methods for halting have been presented in the

literature. The BESO convergence criterion (Huang

et al (2006)) will transition between an initial phase of

changing Ψ to a second phase in which Ψ remains fixed.

It then measures changes in performance between iter-

ations and halts when this performance falls below a

threshold value. Changes in designs during this second

phase were subtle, with performance and visual com-

parisons (see (Huang et al (2006))) showing very small

changes between iterations. In comparison, in this re-

search, the value of Ψ was varied up to the point when

the optimization halted. The BESO convergence crite-

rion compared designs at the same Ψ . Any change in

performance would be much more closely related to the

change in volume ratio rather than how close or far the

optimization was from converging to any solution. In

place of the performance index of the BESO method, a

similar quantity described by the concept of extended

optimality (Rozvany et al (2002)) can be used. Here the

topology and volume fraction were simultaneously var-

ied to try to find the design that minimised/maximised

the ratio between the objective function and the volume

fraction.

A halting method would necessarily need to ensure

that Ψ was not set higher than necessary, but that

there was sufficient material in a structure such that

Θ > Θmax. It is therefore necessary that any halting

method work ensuring that the correct value of Ψ has

been reached, which meets these two conditions. Other

methods, such as those just described seek instead to

halt once the optimization has converged and that the

result is the most efficient structure. Whereas this type

of efficiency is desired, for real structures put into ser-

vice the need to also meet practical performance re-

quirements is important. The structure that is the the-

oretical most efficient, but fractures during operation,

is not the most suitable. The efficiency of the design is

unrelated to the constraint condition. A very high ef-

ficiency tells nothing about whether the design will be

able to meet the design requirements. The value of Ψ

will vary near to a particular value at a point during

the optimization.

The method used in this work was simple and

straightforward, making it easy to understand and im-

plement. Whereas it may be the case that this can be

improved upon, it is an example of a halting method

that relates its operation to the volume ratio history

and to the continuity constraint. It halts for a design

successful against the constraint and at a point at which

further optimization efforts are unlikely to continue to

be very fruitful. It does require the use of two constants,

but default values should be suitable if a designer does

not want/need to specify them.

Although not explored here, the previously men-

tioned methods and performance measuring statistics

could be used in a second optimization phase in which

the halting method presented in this research triggers

a change between phases rather than a complete halt-

ing. A caveat to this approach is that the constraint

must still be respected, leading to a possibility that

designs when at a constant Ψ may still be generated

which violate the constraint condition, in which case

this will still need to be managed. Examples (Huang

et al (2006)) have shown that optimizing a structure at

a fixed volume ratio can provide improvements to the

final optimization results.

7 Conclusion

A method was presented for the topology optimiza-

tion of mechanical structures that absorb energy and

in which material damage is used to formulate the op-

timization task. It used the BESO method augmented

with a continuity constraint condition to ensure designs

successfully absorbed energy from loads without global

failure. This was confirmed by results in which the mass

of test case designs varied in proportion with the energy

that needed to be absorbed, as well as visual observa-

tion of some example models in which the algorithm

correctly differentiated between successful and unsuc-

cessful designs. A method to allow the optimization al-

gorithm to determine when to halt was also presented.

The halting method was shown to be able to halt the

optimization algorithm once it had reached a volume

ratio close to the critical volume ratio. This occurred

after the optimization had transitioned to its second

phase. Guides on how an analyst can use these algo-

rithms in the design process were also presented along

with the motivation and evidence for that advice.
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