139 research outputs found

    Experiments and transient simulation on spring-loaded pressure relief valve under high temperature and high pressure steam conditions

    Get PDF
    Reliable performances of high temperature and high pressure operating steam pressure relief valves (HTHP PRVs) are extremely important for the safety of nuclear power plants. It is still a challenge to accurately describe the dynamic performance of HTHP PRVs. In this study, the accuracy of computational fluid dynamics (CFD) based modelling of the transient processes is examined. For one of the HTHP PRVs named DWPRV, the effects of different parameters on the dynamic performance were investigated by combining CFD simulation and experiments. In the simulation, the domain decomposition method (DDM) and the Grid Pre-deformation Method (GPM) were adopted to handle the moving disk geometry and the large mesh deformation. The effect of damping was also studied. It is confirmed that the use of CFD simulation can improve the design and settings of a HTHP PRV in a highly energetic service that is difficult to test due to safety reasons. For the DWPRV, it was found that the maximum flow rate occurs when the curtain area is 1.18 times the throat area. The degree of superheat ranging from 0 C to 100 C has a negligible effect on the performance of DWPRV regardless of the changes in the material mechanical properties with operating temperatures. The reseating pressure increases linearly with the rise in the distance between the upper adjusting ring and the sealing face. The lower adjusting ring exhibits a weak effect on the reseating pressure. For the ratios of rated lift to throat diameter equalling to 0.3 and 0.35, the DWPRV exhibits the higher blowdown for the ratio of 0.3

    Genomic analyses provide insights into the genome evolution and environmental adaptation of the tobacco moth Ephestia elutella

    Get PDF
    Ephestia elutella is a major pest responsible for significant damage to stored tobacco over many years. Here, we conduct a comparative genomic analysis on this pest, aiming to explore the genetic bases of environmental adaptation of this species. We find gene families associated with nutrient metabolism, detoxification, antioxidant defense and gustatory receptors are expanded in the E. elutella genome. Detailed phylogenetic analysis of P450 genes further reveals obvious duplications in the CYP3 clan in E. elutella compared to the closely related species, the Indianmeal moth Plodia interpunctella. We also identify 229 rapidly evolving genes and 207 positively selected genes in E. elutella, respectively, and highlight two positively selected heat shock protein 40 (Hsp40) genes. In addition, we find a number of species-specific genes related to diverse biological processes, such as mitochondria biology and development. These findings advance our understanding of the mechanisms underlying processes of environmental adaptation on E. elutella and will enable the development of novel pest management strategies

    Phosphoproteins regulated by heat stress in rice leaves

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High temperature is a critical abiotic stress that reduces crop yield and quality. Rice (<it>Oryza sativa </it>L.) plants remodel their proteomes in response to high temperature stress. Moreover, phosphorylation is the most common form of protein post-translational modification (PTM). However, the differential expression of phosphoproteins induced by heat in rice remains unexplored.</p> <p>Methods</p> <p>Phosphoprotein in the leaves of rice under heat stress were displayed using two-dimensional electrophoresis (2-DE) and Pro-Q Diamond dye. Differentially expressed phosphoproteins were identified by MALDI-TOF-TOF-MS/MS and confirmed by Western blotting.</p> <p>Results</p> <p>Ten heat-phosphoproteins were identified from twelve protein spots, including ribulose bisphos-phate carboxylase large chain, 2-Cys peroxiredoxin BAS1, putative mRNA binding protein, Os01g0791600 protein, OSJNBa0076N16.12 protein, putative H(+)-transporting ATP synthase, ATP synthase subunit beta and three putative uncharacterized proteins. The identification of ATP synthase subunit beta was further validated by Western-blotting. Four phosphorylation site predictors were also used to predict the phosphorylation sites and the specific kinases for these 10 phosphoproteins.</p> <p>Conclusion</p> <p>Heat stress induced the dephosphorylation of RuBisCo and the phosphorylation of ATP-β, which decreased the activities of RuBisCo and ATP synthase. The observed dephosphorylation of the mRNA binding protein and 2-Cys peroxiredoxin may be involved in the transduction of heat-stress signaling, but the functional importance of other phosphoproteins, such as H<sup>+</sup>-ATPase, remains unknown.</p

    A 3D inďľ vitro model of patient-derived prostate cancer xenograft for controlled interrogation of inďľ vivo tumor-stromal interactions

    Get PDF
    Patient-derived xenograft (PDX) models better represent human cancer than traditional cell lines. However, the complex in vivo environment makes it challenging to employ PDX models to investigate tumor-stromal interactions, such as those that mediate prostate cancer (PCa) bone metastasis. Thus, we engineered a defined three-dimensional (3D) hydrogel system capable of supporting the co-culture of PCa PDX cells and osteoblastic cells to recapitulate the PCa-osteoblast unit within the bone metastatic microenvironment in vitro. Our 3D model not only maintained cell viability but also preserved the typical osteogenic phenotype of PCa PDX cells. Additionally, co-culture cellularity was maintained over that of either cell type cultured alone, suggesting that the PCa-osteoblast cross-talk supports PCa progression in bone, as is hypothesized to occur in patients with prostatic bone metastasis. Strikingly, osteoblastic cells co-cultured with PCa PDX tumoroids organized around the tumoroids, closely mimicking the architecture of PCa metastases in bone. Finally, tumor-stromal signaling mediated by the fibroblast growth factor axis tightly paralleled that in the in vivo counterpart. Together, these findings indicate that this 3D PCa PDX model recapitulates important pathological properties of PCa bone metastasis, and validate the use of this model for controlled and systematic interrogation of complex in vivo tumor-stromal interactions

    Global Protected Areas as refuges for amphibians and reptiles under climate change

    Get PDF
    Protected Areas (PAs) are the cornerstone of biodiversity conservation. Here, we collated distributional data for >14,000 (~70% of) species of amphibians and reptiles (herpetofauna) to perform a global assessment of the conservation effectiveness of PAs using species distribution models. Our analyses reveal that >91% of herpetofauna species are currently distributed in PAs, and that this proportion will remain unaltered under future climate change. Indeed, loss of species’ distributional ranges will be lower inside PAs than outside them. Therefore, the proportion of effectively protected species is predicted to increase. However, over 7.8% of species currently occur outside PAs, and large spatial conservation gaps remain, mainly across tropical and subtropical moist broadleaf forests, and across non-high-income countries. We also predict that more than 300 amphibian and 500 reptile species may go extinct under climate change over the course of the ongoing century. Our study highlights the importance of PAs in providing herpetofauna with refuge from climate change, and suggests ways to optimize PAs to better conserve biodiversity worldwide

    xPath: Human-AI Diagnosis in Pathology with Multi-Criteria Analyses and Explanation by Hierarchically Traceable Evidence

    Full text link
    Data-driven AI promises support for pathologists to discover sparse tumor patterns in high-resolution histological images. However, from a pathologist's point of view, existing AI suffers from three limitations: (i) a lack of comprehensiveness where most AI algorithms only rely on a single criterion; (ii) a lack of explainability where AI models tend to work as 'black boxes' with little transparency; and (iii) a lack of integrability where it is unclear how AI can become part of pathologists' existing workflow. Based on a formative study with pathologists, we propose two designs for a human-AI collaborative tool: (i) presenting joint analyses of multiple criteria at the top level while (ii) revealing hierarchically traceable evidence on-demand to explain each criterion. We instantiate such designs in xPath -- a brain tumor grading tool where a pathologist can follow a top-down workflow to oversee AI's findings. We conducted a technical evaluation and work sessions with twelve medical professionals in pathology across three medical centers. We report quantitative and qualitative feedback, discuss recurring themes on how our participants interacted with xPath, and provide initial insights for future physician-AI collaborative tools.Comment: 31 pages, 11 figure

    Prediction of blowdown of a pressure relief valve using response surface methodology and CFD techniques

    Get PDF
    In this study, parametric assessment of the main geometric design features of a pressure relief valve (PRV) with a backpressure chamber and two adjusting rings was conducted using response surface methodology. This design approach was established by using computational fluid dynamics (CFD) to model the dynamic performance of the opening and closing of a nuclear power main steam pressure relief valve (NPMS PRV). An experimental facility was established to test the NPMS PRV in accordance with the standard ASME PTC 25, and to validate the CFD model. It was found that the model can accurately simulate the dynamic performance of the NPMS PRV; the difference in blowdown between the simulation and experiment results is found to be below 0.6%. Thus, themodel can be used as part of a design analysis tool. The backpressure chamber assisted in the reseating and decreased the blowdown of the NPMS PRV from 18.13% to 5.50%. The sensitivity to valve geometry was investigated, and an explicit relationship between blowdown and valve geometry was established (with a relative error less than 1%) using the response surface methodology; this will allow designers to assess the valve settings without the need for a CFD model
    • …
    corecore