60 research outputs found
USimAgent: Large Language Models for Simulating Search Users
Due to the advantages in the cost-efficiency and reproducibility, user
simulation has become a promising solution to the user-centric evaluation of
information retrieval systems. Nonetheless, accurately simulating user search
behaviors has long been a challenge, because users' actions in search are
highly complex and driven by intricate cognitive processes such as learning,
reasoning, and planning. Recently, Large Language Models (LLMs) have
demonstrated remarked potential in simulating human-level intelligence and have
been used in building autonomous agents for various tasks. However, the
potential of using LLMs in simulating search behaviors has not yet been fully
explored. In this paper, we introduce a LLM-based user search behavior
simulator, USimAgent. The proposed simulator can simulate users' querying,
clicking, and stopping behaviors during search, and thus, is capable of
generating complete search sessions for specific search tasks. Empirical
investigation on a real user behavior dataset shows that the proposed simulator
outperforms existing methods in query generation and is comparable to
traditional methods in predicting user clicks and stopping behaviors. These
results not only validate the effectiveness of using LLMs for user simulation
but also shed light on the development of a more robust and generic user
simulators
Geology, U-Pb geochronology and stable isotope geochemistry of the Heihaibei gold deposit in the southern part of the Eastern Kunlun Orogenic Belt, China : A granitic intrusion-related gold deposit?
The Heihaibei gold deposit is a newly discovered gold deposit in the southern part of the Eastern Kunlun Orogenic Belt. Its most distinctive features are that the gold mineralization is hosted in monzogranite, and that the presence of pre-ore (possibly syn-ore) monzogranite and post-ore gabbro allows to constrain the minerali-zation's formation age. Zircons from the monzogranites yield U-Pb ages of 454 +/- 3 Ma, while zircons separated from the gabbro dikes cutting the monzogranites and gold mineralized body yield U-Pb ages of 439 +/- 3 Ma, which is interpreted to be the minimum age of the Au mineralizing event. Combined with the regional geological background, we proposed that the Heihaibei Au mineralization occurred during the subduction stage of the Early Paleozoic Proto-Tethys ocean. The ore assemblage is dominated by pyrite, arsenopyrite and native gold. The hydrothermal alteration that has led to the peculiar enrichment of Au is not systematically distributed and displays no clear concentric zoning pattern. The main mineralization formed during three stages: the K-feldspar-quartz-pyrite (Py1)-arsenopyrite-sericite-epidote stage (I), the quartz-pyrite (Py2)-native gold-chlorite stage (II), and the quartz-carbonate stage (III). The main gold mineralization occurred during stage II. Fluid inclusion homogenization temperature and salinities decrease from stage I (Th., 268-412 C; W., 6.87-16.63 wt% NaCl equiv.) to stage II (Th., 183-288 C; W., 3.69-14.84 wt% NaCl equiv.). The 818O and 8D values (818OH2O = 4.9 to 9.7%o; 8DV-SMOW =-84.1%o to -81.1%o) of quartz samples from stage I and stage II are comparable to a magmatic-hydrothermal ore-forming fluid that possibly underwent fluid-rock interaction with the Nachitai Group metamorphic rocks during the early ore-forming stage. The relatively uniform 834S values (834SV-CDT = 7.7 to 8.5%o) are slightly elevated compared to magmatic 834S values, but could be derived from a magma if a significant crustal melt component is present. Moreover, the 834S values are within the S isotopic composition range of a granitic reservoir, suggesting that they are probably inherited from the Heihaibei monzogranites. The Pb and Hf isotope compositions imply a close genetic association between the gold mineralization and granitic magmatism, which are both the products of the mixing of crustal and mantle sources. The trace element compositions of pyrite provide additional evidence that the gold mineralization in the Heihaibei deposit was related to the magmatism. Compared with the typical characteristics of orogenic gold and intrusion-related gold systems (IRGS) deposits, the Heihaibei gold deposit may instead be classified as a granitic intrusion-related gold deposit.Peer reviewe
Association between FGA gene polymorphisms and coronary artery lesion in Kawasaki disease
ObjectiveTo investigate the correlation between FGA gene polymorphisms and coronary artery lesion in Kawasaki disease.MethodsTwo hundred and thirty four children with Kawasaki disease (KD group), 200 healthy children (normal group) and 208 children with non-KD fever (fever group) were enrolled. General clinical indicators, the concentration of serum MMPs, TIMP-1, FG-α,fibrinogen level, molecular function (FMPV/ODmax) and FGA Thr312Ala polymorphism were detected individually by testing peripheral venous blood after fasting in the morning.ResultsThere was no significant difference in average age among the three groups, which were 3.03 ± 1.22 years, 3.17 ± 1.30 years, and 3.21 ± 1.31 years, respectively. Compared with those in the fever group, the levels of white blood cell count (WBC), platelet count (PLT), procalcitonin (PCT), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and fibrinogen (Fg) levels were significantly increased in the KD group. Red blood cell count (RBC) and hemoglobin (Hb) levels were significantly decreased (p < 0.05).The concentration of serum MMPs, TIMP-1, and FG-α in the KD and fever groups were significantly higher than those in the normal group (p < 0.05). The concentration of MMP-2, MMP-3, MMP-9, MMP-13, TIMP-1, and FG-α in the KD group were significantly higher than those in the fever group (p < 0.05).The KD group was divided into two subgroups,55 patients with combined CAL and 179 patients without combined CAL. The plasma fibrinogen concentration in the combined CAL group was significantly higher than that in the non-combined CAL and normal groups (p < 0.01). There was no statistically significant difference in FMPV/ODmax among the three groups (p > 0.05). Compared with normal group, the FGA GG, GA, and AA genotype and G, A allele frequency of the FGA gene polymorphism in the KD group showed no significant difference (p > 0.05). In the KD group, the most common type in children with CAL was GA, while the most common type in children without CAL was GG.ConclusionMMPs and FG-α were significantly upregulated in KD patients. The proportion of FGA genotype GA in children with CAL was significantly higher than that in children without CAL, suggesting that FGA gene polymorphisms affect coronary artery lesion in children with KD
Significant performance improvement in dye-sensitized solar cells employing the cobalt(III/II) tris-bipyridyl redox mediator by co-grafting alkyl phosphonic acids with a ruthenium sensitizer
10.1039/C3CP50998BPhysical chemistry chemical physics15176170-617
Chemical Stability of Metal Halide Perovskite Detectors
Metal halide perovskite (MHP) detectors are highly esteemed for their outstanding photoelectric properties and versatility in applications. However, they are unfortunately prone to degradation, which constitutes a significant barrier to their sustained performance. This review meticulously delves into the causes leading to their instability, predominantly attributable to factors such as humidity, temperature, and electric fields and, notably, to various radiation factors such as X-rays, γ-rays, electron beams, and proton beams. Furthermore, it outlines recent advancements in strategies aimed at mitigating these detrimental effects, emphasizing breakthroughs in composition engineering, heterostructure construction, and encapsulation methodologies. At last, this review underscores the needs for future improvements in theoretical studies, material design, and standard testing protocols. In the pursuit of optimizing the chemical stability of MHP detectors, collaborative efforts are in an imperative need. In this way, broad industrial applications of MHP detectors could be achieved
Spectral Feature Extraction Using Partial and General Method
With the rapid growth in astronomical spectra produced by large sky survey telescopes, traditional manual classification processes can no longer fulfill the requirements of precision and efficiency of spectral classification. There is an urgent need to employ machine learning approaches to conduct automated spectral classification tasks. Feature extraction is a critical step which has a great impact on any classification result. In this paper, a novel gradient-based method together with principal component analysis is proposed for the extraction of partial features of stellar spectra, that is, a feature vector indicating obvious local changes in data, which corresponds to the element line positions in the spectra. Furthermore, a general feature vector is utilized as an additional characteristic centering on the overall tendency of spectra, which can indicate stellar effective temperature. The two feature vectors and raw data are input into three neural networks, respectively, for training and each network votes for a predicted category of spectra. By selecting the class having the maximum votes, different types of spectra can be classified with high accuracy. The experimental results prove that a better performance can be achieved using the partial and general methods in this paper. The method could also be applied to other similar one-dimensional spectra, and the concepts proposed could ultimately expand the scope of machine learning application in astronomical spectral processing
Robust Iris-Localization Algorithm in Non-Cooperative Environments Based on the Improved YOLO v4 Model
Iris localization in non-cooperative environments is challenging and essential for accurate iris recognition. Motivated by the traditional iris-localization algorithm and the robustness of the YOLO model, we propose a novel iris-localization algorithm. First, we design a novel iris detector with a modified you only look once v4 (YOLO v4) model. We can approximate the position of the pupil center. Then, we use a modified integro-differential operator to precisely locate the iris inner and outer boundaries. Experiment results show that iris-detection accuracy can reach 99.83% with this modified YOLO v4 model, which is higher than that of a traditional YOLO v4 model. The accuracy in locating the inner and outer boundary of the iris without glasses can reach 97.72% at a short distance and 98.32% at a long distance. The locating accuracy with glasses can obtained at 93.91% and 84%, respectively. It is much higher than the traditional Daugman’s algorithm. Extensive experiments conducted on multiple datasets demonstrate the effectiveness and robustness of our method for iris localization in non-cooperative environments
Extension of M Dwarf Spectra Based on Adversarial AutoEncoder
M dwarfs are main sequence stars and they exist in all stages of galaxy evolution. As the living fossils of cosmic evolution, the study of M dwarfs is of great significance to the understanding of stars and the stellar populations of the Milky Way. Previously, M dwarf research was limited due to insufficient spectroscopic spectra. Recently, the data volume of M dwarfs was greatly increased with the launch of large sky survey telescopes such as Sloan Digital Sky Survey and Large Sky Area Multi-Object Fiber Spectroscopy Telescope. However, the spectra of M dwarfs mainly concentrate in the subtypes of M0–M4, and the number of M5–M9 is still relatively limited. With the continuous development of machine learning, the generative model was improved and provides methods to solve the shortage of specified training samples. In this paper, the Adversarial AutoEncoder is proposed and implemented to solve this problem. Adversarial AutoEncoder is a probabilistic AutoEncoder that uses the Generative Adversarial Nets to generate data by matching the posterior of the hidden code vector of the original data extracted by the AutoEncoder with a prior distribution. Matching the posterior to the prior ensures each part of prior space generated results in meaningful data. To verify the quality of the generated spectra data, we performed qualitative and quantitative verification. The experimental results indicate the generation spectra data enhance the measured spectra data and have scientific applicability
- …