43 research outputs found

    Quasi-Free Electron States Responsible for Single-Molecule Conductance Enhancement in Stable Radical

    Get PDF
    Stable organic radicals, which possess half-filled orbitals in the vicinity of the Fermi energy, are promising candidates for electronic devices. In this Letter, using a combination of scanning-tunneling-microscopy-based break junction (STM-BJ) experiments and quantum transport theory, a stable fluorene-based radical is investigated. We demonstrate that the transport properties of a series of fluorene derivatives can be tuned by controlling the degree of localization of certain orbitals. More specifically, radical has a delocalized half-filled orbital resulting in Breit-Wigner resonances, leading to an unprecedented conductance enhancement of 2 orders of magnitude larger than the neutral nonradical counterpart ( ). In other words, conversion from a closed-shell fluorene derivative to the free radical in opens an electron transport path which massively enhances the conductance. This new understanding of the role of radicals in single-molecule junctions opens up a novel design strategy for single-molecule-based spintronic devices

    An Immersed FEM for Elasticity Equations with Interfaces

    No full text
    The immersed finite element method based on a uniform Cartesian mesh has been developed for elasticity equations with discontinuous physical parameters across an interface in this paper. The interface does not have to be aligned with the mesh. The main idea is to modify the basis function over those triangles in which the interface cuts through so that the natural interface conditions are satisfied. The standard linear basis functions are used for other triangles. A level set function whose zero level set represent the interface is used. Numerical examples are also presented

    Sperm Motility and Multiciliary Beating: An Integrative Mechanical Model

    Get PDF
    AbstractThe motility of sperm flagella and cilia are based on a common axonemal structure. In this article, we describe a fluid-mechanical model for the ciliary and sperm axoneme. This fluid-mechanical model, based on the immersed boundary method, couples the internal force generation of dynein molecular motors through the passive elastic axonemal structure with the external fluid mechanics governed by the Navier-Stokes equations. We show recent numerical simulation results for sperm motility and multiciliary interaction

    Blockchain based trusted execution environment architecture analysis for multi - source data fusion scenario

    No full text
    Abstract Multi-source data fusion techniques are widely applied in dynamic target detection scenarios, such as target situational awareness, radar signal resolution, and feature fusion labeling. Currently, techniques including clustering, neural networks, Bayesian analysis, and machine learning have been applied to improve the success rate of multi-source data fusion in terms of interference data noise reduction. The research on data tampering prevention of multiple data sources is mainly based on the data distributed authentication technology. The research on performing data fusion process in a trusted execution environment is mainly based on cryptography and codec technology. This paper focuses on the technical application architecture that can effectively improve the comprehensive efficiency of multi-source data fusion processing under the constraints of business scenarios. Accordingly, this paper proposes a trusted execution environment architecture based on blockchain technology for multi-source data fusion scenarios. It integrates the strategy of trusted data source data verification in blockchain smart contracts into the typical multi-source data fusion application architecture. After comparison tests in a simulation environment, the trusted execution environment architecture based on blockchain technology has shown considerable improvements in fusion success rate with limited performance cost

    Study on the Difference of Superhydrophobic Characteristics of Different Wood Furniture Substrates

    No full text
    To enhance the stability of wood and decrease restrictions on its use in the furniture industry, hydrophobic modification can be employed to confer waterproof, anti-fouling, and self-cleaning properties. The present study outlines the preparation of silica sol using the sol–gel method, followed by impregnation and chemical vapor deposition methods to modify the sol. After grafting 1H,1H,2H,2H-perfluoro-decyl trichlorosilane (FDTS), hydrophobic and superhydrophobic properties were imparted to the wood substrate. To explore the correlation between the surface properties of the wood substrate and superhydrophobic coatings, the densities, porosities, and surface roughness of various tree species were compared. The results showed that the sol–gel method successfully constructed hydrophobic coatings on different wood substrates, with six samples (poplar, elm, toon wood, paulownia, ashtree, and black walnut) achieving superhydrophobic surfaces, with densities ranging from 0.386 to 0.794 g/cm3, porosity ranging from 13.66 to 42.36%, roughness ranging from 4.660 to 11.244 um, and maximum water contact angle of 165.2°. Whereas beech and rosewood only reach the hydrophobic surface. Although the coatings demonstrated good resistance to water, pollutants, self-cleaning, and chemical agents, further improvements are necessary to enhance mechanical wear resistance
    corecore