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Abstract—The motility of sperm flagella and cilia are based on a common axonemal structure.
In this article, we describe a fluid-mechanical model for the ciliary and sperm axoneme. This fluid-
mechanical model, based on the immersed boundary method, couples the internal force generation
of dynein molecular motors through the passive elastic axonemal structure with the external fluid
mechanics governed by the Navier-Stokes equations. We show recent numerical simulation results for
sperm motility and multiciliary interaction. © 2006 Elsevier Ltd. All rights reserved.

1. INTRODUCTION

The mathematical modeling of sperm motility and ciliary motion has a rich history with the
pioneering work of Taylor [1], Gray and Hancock (2] and Lighthill (3] as well as more recent
contributions by many others (for review, see [4]). Nevertheless, there remain several open
scientific questions in ciliary and sperm mechanics: what mechanisms govern the activation of
dyneins to produce the wide variety of flagellar and ciliary waveforms? What are the mechanisms
governing multiciliary wave forms? What is the mechanical basis for hyperactivation in sperm
and what is the steering mechanism for sperm in those species that are chemotactic?

The typical “9 + 2” axoneme, as shown in Figure 1, consists of a central pair of singlet mi-
crotubules surrounded by nine outer doublet microtubules and encased by the cell membrane
(cf. [5,6] for review). The nine outer doublets are connected by radial spokes to a sheath sur-
rounding the central pair. In addition, the outer doublets are connected by protein structures,
named nexin links, between adjacent pairs of doublets. Two rows of dynein arms extend from
an outer doublet toward an adjacent doublet at regularly spaced intervals. The bending of the
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Figure 1. Diagram of the “9 4+ 2” axoneme.

axoneme is caused by sliding between pairs of outer doublets. Active sliding is due to the uni-
directional ATP-induced force generation of the dynein power stroke. Backward, passive sliding
is due to the active sliding of other pairs of doublets within the axoneme. The precise nature of
the spatial and temporal control mechanisms regulating the various flagellar and ciliary beats is
still unknown.

In [7], a model of an idealized cilium was introduced. This model, based on the immersed
boundary method [8], incorporated a mechanical representation of the cilium’s axoneme and dis-
crete representations of the individual dynein motors coupled to the fluid mechanics governed by
the Navier-Stokes equations. A model for sperm motility was introduced in [9]. The sperm model
utilized the axonemal structure of the cilium model coupled with a simple curvature controlled
dynein activation mechanism. In this article, we give a description of the cilia and sperm models
and show recent simulation results for sperm motility based on a curvature threshold mechanism,
as well as simulations of multiciliary interactions.

2. MATHEMATICAL MODEL

The formulation of our model is based on the immersed boundary method, first introduced
by Peskin [8] to model blood flow in the heart. This method provides a framework for coupling
the elastic dynamics of cilia and sperm flagella with a viscous incompressible fluid (for recent
reviews, see [10,11]). This method treats neutrally-buoyant elastic boundaries immersed in a
fluid as regions of fluid in which additional forces are applied. These elastic boundaries may be
thought of as delta-function layers of force that exert force on the fluid and alter its motion, but
at the same time move at the local fluid velocity. The immersed boundary method has been used
in a variety of biological applications including the study of sperm motility in the reproductive
tract [12], platelet aggregation [13], biofilm processes [14,15], three-dimensional blood flow in
the heart [16,17], arteriolar flow [18], limb development [19], and large deformation of red blood
cells [20].

The structure of the two-dimensional model axoneme consists of microtubules (see Figure 2a).
Each of the axoneme’s two microtubules consists of two filaments with diagonal cross-links. The
filaments are highly resistant to stretching and compression but offer no resistance to bending.
Resistance to bending of the microtubules is governed by the elastic properties of the diagonal
cross-links. Adjacent pairs of microtubules are interconnected with horizontal links representing
the nexin links of the axoneme. Dynein motors are represented as dynamic diagonal elastic links
between adjacent pairs of microtubules. These elastic springs may form, change connectivity,
and be broken during the course of the computations. Dynamic link formulations have been used
in other immersed boundary calculations to model cell-cell cohesion in platelet aggregation [13]
and biofilm formation [14]. In addition, dynamic links have been used to simulate a viscoelastic
fluid within the immersed boundary framework in [21].
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Q
(a) Schematic of cilia axoneme (b) Sperm. (c) Detail of sperm axoneme,
in (LR) mode. basal body and head.
Figure 2.

In cilia and flagella, the active sliding between adjacent pairs of microtubules can occur in
only one direction. Thus, dyneins on different pairs of microtubules must be activated in order
to produce a ciliary or flagellar beat. We accomplish this in our model by allowing two con-
figurations. In the left to right configuration shown in the schematic, designated LR mode, the
dyneins are permanently attached to fixed nodes on the left microtubule. Dynein attachment on
the opposite microtubule attachment sites can be transitory. Contraction of the dynein generates
sliding between the two microtubules with the right-hand microtubule moving upwards relative
to the left. Since the pair of microtubules is tethered at the base, sliding is converted to bend-
ing and the tip moves toward the right. In the right to left configuration, designated RL mode
(not shown), the dyneins are permanently attached to fixed nodes on the right-hand microtubule
and extend downward toward transitory attachment sites on the left-hand microtubule. As the
dyneins contract, the left-hand microtubule moves upward relative to the right-hand microtubule
and the tip moves toward the left. In either configuration, one end of a dynein can attach, detach,
and reattach to attachment sites on the microtubule. In our model of flagellar swimming, some
of the dyneins are in LR mode and others in RL mode.

A structure representing the cell body may be included as shown in Figure 2b. The model
for the sperm axoneme includes a specialized basal region adjacent to the cell body as shown
in Figure 2c. The model basal body includes a network of elastic elements extending from
one microtubule to the other which are designed to restrict relative movement between the two
microtubules. Dyneins and nexin links are deleted from this basal region. Although cilia also
have basal bodies in the region near the cell wall, this has not yet been included in the cilia
models.

2.1. Mathematical Framework

The fluid is regarded as viscous and incompressible, and the microtubule filaments that compose
the sperm or cilium are elastic boundaries immersed in this fluid. The other structures within
the axoneme are represented as forces which act upon the filaments. We assume that the flow is
governed by the Navier-Stokes equations

10}
P [6—? +u- Vu] = —Vp+ pAu + F(x,t), (1)

V-u=0, (2)

which describe the balance of momentum and conservation of mass in a viscous incompressible
fluid. Here p is the fluid density, u is the fluid viscosity, u = (u,v) is the fluid velocity, p denotes
the pressure, and F is the force density (force per unit area in two dimensions) which is exerted
on the fluid by the axoneme and cell membrane.

The force density F in equation (1)

F=Fy+Fy+Fp+Fc 3)
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includes contributions arising from the deformation of the elastic structure of the microtu-
bules Fy, elongation of the nexin links Fj, contraction of the dynein links Fp as well as forces
on the cell membrane that maintain the shape of the cell body F¢.

Each of the microtubules, in this two-dimensional model, is represented at time t as a pair
of one-dimensional filaments, X*(s,t), indexed by a Lagrangian parameters s (arclength in an
unstressed configuration). The force per unit length f*(s, t)

£5 =5 + 8 + 15 4 £5 (4)

along the k" filament includes contributions from elastic structure of the microtubules f X, nexin
links, f¥, dynein links f %, and cell-wall forces fg. The force densities Fx, X = M,N,D,C, in
equation (3) are obtained via integration

FX@¢):§:/f§@¢ﬁ(x—xﬁ@¢»d& (5)
k

Here, the integrations are over the filaments, and § is the two-dimensional Dirac delta function.
This integral communicates the force defined on the immersed boundaries (filaments) to a force
defined in all of space. Of course, the force Fx is nonzero only at points in space that coincide
with immersed boundary points.

Our coupled fluid-axoneme system is closed by requiring that the velocity of the microtubules
and cell membrane must be equal to the local fluid velocity at each point.

OXK(s,t)

5t u (Xk(s,t),t) = /u(x, t)6 (x — X*(s,¢)) dx. (6)

Here the integration is over the entire fluid domain.

In the following we describe the discretized version of the model system. The microtubule fila-
ments X¥(s,t) are discretized and represented as immersed boundary points or nodes X*(t) with
i=1,...,Np. Similarly, the microtubule forces f% (s, t) are represented as discrete forces ff(ﬂ-(t)
at the immersed boundary points.

2.2. Microtubules and Cell Membrane

We represent each microtubule as a pair of filaments with additional cross-link forces between
the filaments. The filaments themselves are composed of individual elastic links. The diagonal
cross-links and filament links attach at the immersed boundary points. In the configuration shown
in Figure 2a, pairs of upper and lower cross-links form equilateral triangles with the associated
filament links. The N, nodes on each filament are indexed with i = 1,... N, from base to tip! and
we imagine that between each pair of successive points Xf, Xf °,1 on a microtubule filament, there
is an elastic spring or ‘link’ which generates forces to push the link’s length toward a specified
resting length. As illustrated in Figure 2, each immersed boundary point is connected by elastic
springs to the two nearest nodes on the same filament as well as to the two nearest nodes on the
opposite filament of the same microtubule via diagonal elastic springs. The microtubule forces
ff\‘/f’i(t) include a contribution from the link between the i** node and the (i + 1)*" node on the
same filament of the form

Xk — Xk
=Sy (|Xk, . — XF|| — Asy) m (7)

This force is, therefore, a stiffness constant (Sy) times the deviation from rest length (Ass) and
is applied tangent to the spring. In addition forces due to the elastic diagonal cross-links are

1As shown in the schematic (Figure 2), each of the inner filaments has two more nodes than the outer filaments.
As a result, the outer filaments of the axoneme are indexed with i = 2,...Np — 1.
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also generated. The equations for the diagonal forces are similar to equation (7) with stiffness
constant Sy and resting length Asq = Asy. The sum of the forces at the i*h node on the kth
filament due to the elastic links along the filament and diagonal cross-links is given by f,'f,fyi(t).

The cell membrane is modeled by including additional elastic forces of the form shown in
equation (7). The configuration of the cell membrane links for sperm is illustrated in Figure 2c.
For cilia, the immersed boundary points of the cell membrane are tethered to fixed points in
space by means of stiff elastic links.

2.3. Dyneins and Nexin Links

Dyneins are represented in the model as elastic links between the two microtubules. The dynein
forces are applied at the immersed boundary points on the inner filaments (k = 2 and k = 3) as
shown in Figure 2. During the course of a simulation, two families of dyneins are tracked:

e LR mode. These dyneins are oriented diagonally downwards from the left microtubule
to the right microtubule. If activated, these dyneins contract and the right microtubule
slides distally relative to the left microtubule.

e RL mode. These dyneins are oriented diagonally downwards from the right microtubule
to the left microtubule. If activated, these dyneins contract and the left microtubule slides
distally relative to the right microtubule.

The model schematic shown in Figure 2a illustrates the dynein configuration for the LR mode
along the entire length of the axoneme. Dynein elastic links are shown connecting the i*" node
on the inner filament of the left microtubule with the (7 — M)*® node on the right microtubule.
The index 7 is the closest node on the inner filament of the right microtubule. The offset M is
set at 2 for all of the simulations shown in this paper. Let XF for i = 1,..., N, be the immersed
boundary points along the inner filament of the left microtubule and X be the nodes along the
inner filament of the right microtubule. Similarly, let £~ and 2 be the dynein forces at these
immersed boundary points. The equation for the dynein force at X in the LR mode is

fL = Sy XE-XE,)), (8)
where S4yn is the dynein spring force parameter. The dynein forces at each end of the dynein
are equal and opposite with f{i M= —fF. Dynein forces in the RL mode are described similarly.
Note the dynein force is represented as a linear elastic spring with zero resting length. This
discussion applies to dyneins that are currently active. The activation of dyneins will discussed
below.

Dynein connectivity is reassessed at each time step of a numerical simulation. As the micro-
tubules slide, the endpoint of a dynein link may ‘ratchet’ from one node of the microtubule to
another. Nexin links are also represented in this model. In the LR mode as shown in Figure 2, the
nexins form a link between the inner filaments connecting the node at X#(t) with X where X[
is the closest point on the left, inner filament. The equation for the nexin link force fﬁ,i at the
node X? is

- XL _XR
£,4(t) = =Sn (|| X5 = X7 - Asw) HXZL——X%H (9)

The force at X} is —f 11\?1 Thus the nexin link force is a normal force applied orthogonally to the
tangent lines of the filaments at the two points. The force applied has force constant Sy and
resting length Asy. The latter is chosen to be the resting length separating distance between
the two microtubules.

The dynein force parameter Sqyn in equation (8) at the i*" dynein may depend upon the local
intermicrotubule spacing z;. In LR mode z; = || X — X[|| with a similar expression in the RL
model. We assume that the dynein spring parameter has the form Sgy,(2) = S’dyng(z). The form
of g is described in [9].
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The dynein forces and nexin forces described here can also be viewed as a single mechanism
describing a model dynein. The tangential forces of the diagonal links generate the shear forces
and are responsible for sliding, whereas the nexin forces resist changes in intermicrotubule spacing.

2.4. Force Field

The forces due to all of the springs representing the filament links, diagonal cross-links, nexin
links, and dyneins contribute to the force density function at each of the nodes. A discrete version
of equation (3) is used to spread this force density defined along microtubules to a force field
on the fluid domain. The microtubule point forces are distributed to the fluid by the use of an
approximate delta function of the form 6,(x) = d(x)d(y) where h is mesh width of the finite

difference fluid grid and 1
wr
— —— h
d(r) = { 1 (1+eosgg) s Irl<zh, (10)
0, |r] > 2h.

We refer the reader to [8] for details.
The discrete version of the microtubule force field F; is given by

Fu(x,t) =) fh7:(6)8n (x — XE(1)) Asy. (11)
i,k

The cell wall force field is obtained similarly.
The active dynein force field Fp is given by

Fp(x,t) =Y (EX(t)0n (x — XF(1) + £7 ()0 (x — X (2))) Asy. (12)

i
Similar equations are used to obtain the nexin link force field.

2.5. Numerical Algorithm

We can summarize the immersed boundary algorithm as follows: suppose that at the end
of timestep n we have the fluid velocity field u™ on a grid, and the configuration of the im-
mersed boundary points comprising the filaments of the microtubules (X*)™ and the cell mem-
brane (X.)™. Then to advance the system by one timestep we:

1. Reassess the connectivity structure of dynein motors and nexin links.
2. Decide upon the activation of dyneins based upon the configuration of the filaments of
the microtubules (X*)=,

3. Calculate the force densities f¥ from the microtubule boundary configuration, dyneins
and nexin links.

. Calculate the force densities f. from the cell membrane configuration (X.)™.

. Spread the force densities to the grid to determine the forces F on the fluid.

. Solve the Navier-Stokes equations for the fluid velocities u™*1.

. Interpolate the fluid velocity field to each immersed boundary point (X*)™ and (X.)" and
move the point at this local fluid velocity.

~N O Ol

It is in Steps (1) and (2) that we implement different dynein activation strategies. The ki-
netics of individual dynein activation may depend upon the geometry of the structure, such as
local curvature, shear and intermicrotubule spacing. In addition, the activation kinetics may be
stochastic. For a comprehensive discussion of the modeling of dynein activation, see [5].

The crucial feature of this fluid-structure interaction model is that the axoneme is not the
computational boundary in the Navier-Stokes solver. This immersed boundary is the source
of a dynamic force field which influences the fluid motion through the force term in the fluid
equations. This allows us to easily simulate the interaction of several cilia or sperm efficiently.
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Since the computational domain is a fixed rectangle, we can use an efficient fluid solver designed
for a regular grid with simple boundary conditions. For Step (6) we use a finite difference scheme
with periodic boundary conditions. This method, described in detail in [19], is a fast Fourier
transform method suited for low Reynolds numbers. Steps (5) and (7) involve the use of the
discrete delta function shown in equation (10) which communicates information between the grid
and the immersed boundary points.

3. NUMERICAL RESULTS: SPERM FLAGELLAR MOTION

In [9] we presented a dynein activation mechanism for sperm flagellar motion which we shall
refer to as the LAG model. In the LAG model, dyneins in a given location at time ¢ were set in
the LR (RL) mode if the curvature at that site were positive (negative) at time t—7, where 7 > 0.
Thus present dynein activation would depend on the sign of curvature at time 7 in the past. The
LAG parameter 7 was typically in the range of several milliseconds and could be regarded as the
composite time lag of the various physical and chemical stages in the dynein activation cycle.

In the THRESHOLD model presented here, a dynein mode switches from RL to LR if the local
curvature exceeds a specified positive threshold value TH. Similarly, the dynein switches from
LR to RL mode when the local curvature falls below a specified negative threshold value — TH.
Once the mode is switched, the activation of the dynein is delayed by a time 7. This is similar
to the LAG model wherein TH = 0.

In Figure 3 we show simulation results of the sperm model using the THRESHOLD model for
dynein activation. In this simulation the fluid viscosity is that of water (1cp). The flagella
exhibits a beat frequency of approximately 78 Hz. The four frames shown here illustrate the
flagellar waveform over 1.5 beats. In Figure 4 we show snapshots at time ¢t = 0.06 s from three
different simulations with viscosities of 1cp, 5¢cp, and 10cp. We see a reduction of swimming
speed, flagellar amplitude and wavelength as fluid viscosity is increased. In the LAG model we
observed a reduction of swimming speed, but increased flagellar amplitude and no change in flag-
ellar wavelength as fluid viscosity increased [9]. Thus the LAG and THRESHOLD models exhibit
significant differences in the response to changes in fluid viscosity. The LAG and THRESHOLD
models are based on dynein activation schemes originally proposed by [22-25]. See also [26,27].

(a) 0.0120s. (b) 0.0184s. (c) 0.248s. (d) 0.0312s.

Figure 3. Snapshots of sperm swimming with THRESHOLD dynein activation at times.

(a) 1cp. (b) 5¢p. (c) 10cp.

Figure 4. THRESHOLD model with changes in viscosity.
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I

t = 0.0000s.

t = 0.0136s. t = 0.0152s. t = 0.0168s. t =0.0184s.

Figure 5. Snapshots of cilia with velocity fields at selected times.

4. NUMERICAL RESULTS: MULTICILIARY MOTION

The multicilia model is an extension of the single cilium model described above. The axoneme
of each cilia in the model system is based on the structure shown in Figure 2a. Here we show the
results of numerical simulations for a two-ciliary model. In each of these simulations, our fluid
domain is 40 um x 40 um. The finite difference grid we used is 256 x 256. In the configuration
of cilia, the length of each cilium is approximately 14 um. The spacing between cilia in each
simulation is 2.8125 um. We employ a geometric switch as described in [7] to determine when
the cilium beat changes directions. That is, the ciliary beat changes its directions once the shear
between microtubules has exceeded a specified threshold. In the simulations shown here, the
switch occurs when the dynein attachment site at the tip is eight attachment sites from its initial
configuration. The beat of each cilium changes its direction independently. In recovery stroke,
the dynein activation wave front is controlled by the curvature control algorithm used in [7].

In Figure 5, we show snapshots of velocity fields at different times. In this simulation, the two
cilia are parallel at t = 0s. Att = 0.0008s and t = 0.0024s, the ciliary beat is in its power stroke,
but at ¢t = 0.004s, the ciliary beat is in the recovery stroke (note the direction of the velocity
fields). The beating frequency in Figure 5 is about 59 Hz. We show in Figures 6 and 7 results
from a single simulation. At the beginning of the simulation, as shown in Figure 6, the beats
of the two cilia are out of phase. By time ¢t = 0.0560s, as shown in Figure 7, the cilia exhibit



Sperm Motility and Multiciliary Beating 757

/

t = 0.0000s.

t = 0.0096s. t =0.0112s. t = 0.0136s. t = 0.0148s.

Figure 6. Synchronization of two cilia: at times ¢t = Os to ¢t = 0.0148s.

t = 0.0700s. t = 0.0720s. t = 0.0756s. t =0.0788s.

Figure 7. Synchronization of two cilia: at times ¢t = 0.0560s to t = 0.0888s.

more synchronization and have a beating frequency of about 59 Hz, which is the same as that in
Figure 5. Simulations results (not shown) suggest that multiciliary interaction is subject to the
spacing between cilia, fluid viscosity, and the switching algorithm.

5. DISCUSSION

Although the flagellar wave forms in the LAG and THRESHOLD models are very similar in
some parameter ranges, the two models exhibit different responses to changes in fluid viscosity.
There is experimental evidence that suggests a decrease in flagellar wavelength as a response to
increasing fluid viscosity [28-31]. Thus, the preliminary simulation results shown here indicate
that the THRESHOLD model is superior to the LAG model in its response to changes in fluid
viscosity. We are currently conducting a detailed study of this issue.

A critical issue in multiciliary interaction is the mechanism for switching between effective and
recovery modes. In the geometric switch model used here, the cilia switch directions once the
bend angle exceeds a critical threshold, or equivalently, there is sufficient shear at the ciliary
tips. This mechanism works well with one or two cilia but may break down when more cilia are
introduced into the system. In this case, the reversal of one cilium can impede the motion of
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neighboring cilia. We are developing an alternative model for the switching mechanism which
includes shear velocity as well as shear. In addition, we are developing three-dimensional versions
of these models.
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